From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from smtp1.osuosl.org (smtp1.osuosl.org [IPv6:2605:bc80:3010::138]) by lists.linuxfoundation.org (Postfix) with ESMTP id DC7F1C000A for ; Wed, 17 Mar 2021 05:59:46 +0000 (UTC) Received: from localhost (localhost [127.0.0.1]) by smtp1.osuosl.org (Postfix) with ESMTP id A3E7E83396 for ; Wed, 17 Mar 2021 05:59:46 +0000 (UTC) X-Virus-Scanned: amavisd-new at osuosl.org X-Spam-Flag: NO X-Spam-Score: -2.096 X-Spam-Level: X-Spam-Status: No, score=-2.096 tagged_above=-999 required=5 tests=[BAYES_00=-1.9, DC_PNG_UNO_LARGO=0.001, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001, HTML_MESSAGE=0.001, LOTS_OF_MONEY=0.001, RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001] autolearn=ham autolearn_force=no Authentication-Results: smtp1.osuosl.org (amavisd-new); dkim=pass (2048-bit key) header.d=gmail.com Received: from smtp1.osuosl.org ([127.0.0.1]) by localhost (smtp1.osuosl.org [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id rNqrmo0d9JxU for ; Wed, 17 Mar 2021 05:59:45 +0000 (UTC) X-Greylist: whitelisted by SQLgrey-1.8.0 Received: from mail-yb1-xb2f.google.com (mail-yb1-xb2f.google.com [IPv6:2607:f8b0:4864:20::b2f]) by smtp1.osuosl.org (Postfix) with ESMTPS id ADA6C8336D for ; Wed, 17 Mar 2021 05:59:44 +0000 (UTC) Received: by mail-yb1-xb2f.google.com with SMTP id u3so39354040ybk.6 for ; Tue, 16 Mar 2021 22:59:44 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:references:in-reply-to:from:date:message-id:subject:to :cc; bh=b+FMSDoOyJls7KWOqL4LwwM1K3qXS87q/tTHrdnUUcg=; b=RWZoF623UwnoSgdb0m6yF2OFpcpjReneu6A163u825+pNxm/T78wwlCdgu4LzSwPLl KuaYy0BmOjpnk1DXyfw3R94bpR5aCzrl3ayZKCOZd/4gYKne5d2jxxmnj9hXSYMcJiJ/ OJAQGSssyNZOWkfmA+HHn886IXmV0n1bo3oFpdv4hUCULx4N10wyWEcijitl4i9VeNCo Hs49hxk82vhsujPeZZOA/Ptf4czSLXVSjwbGxIP5og+TcV0oa1keE9P2ITJhHWdOoyc/ tPXwzA2YN+QTuXVP5zvmJQiUQiw8dt+/njx/UAJVttfCk/QISK3XloQH1MebxA3823Gc GNdw== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to:cc; bh=b+FMSDoOyJls7KWOqL4LwwM1K3qXS87q/tTHrdnUUcg=; b=rafa9aaBszG4jyMewt2C2zsQcTl7B30PlrcO28EXoqZQpAcvuP6mt1mXyzVf6/X7N9 TOPmdSnlHj/ZV/T3oTsayx24maBqvP2h5SVzr7SNKHpqfaZIa3OluLE2TuSl/okRVKro DzeQlmhezk/ldgACxGmkr9ovPNATwvR6xuVTu7vgi6IksD2H9x39HK5zWGy2y6qQPBZQ fPByYB6ylNf3ZAJKSEL5ti+NJRbtc0gae16xgkqGrx5eN+B+fCPPHMsmncQqmJVELPsT XyBP5ALDnXZgviflmnEMUAZnHZDNWhkMb9INMv+aLTeLzP/MqCVNAjVAoTeQxy78S1iS 5Mcw== X-Gm-Message-State: AOAM530j4iVgzZAlb/rkWKS13ttSbHcgGk4+ij04D/Kj7i3miY3gMmCx LxYfeydHeA0AbDap2Cr6Nzv8N0T3xz74UbVX/mWrIzLxa1I= X-Google-Smtp-Source: ABdhPJyayrEk5V5FfqGE13Xk5ZeXD3VwFvnfj+8TfXiDNszG2WVZ+tCZxRgXVz5wixfDtSzOMrGsb5xGVXHVCw2IunA= X-Received: by 2002:a25:d843:: with SMTP id p64mr2457172ybg.339.1615960783158; Tue, 16 Mar 2021 22:59:43 -0700 (PDT) MIME-Version: 1.0 References: In-Reply-To: From: Lonero Foundation Date: Wed, 17 Mar 2021 01:59:31 -0400 Message-ID: To: ZmnSCPxj Content-Type: multipart/mixed; boundary="00000000000073a14405bdb5305e" X-Mailman-Approved-At: Wed, 17 Mar 2021 19:10:49 +0000 Cc: Bitcoin Protocol Discussion Subject: Re: [bitcoin-dev] BIP Proposal: Consensus (hard fork) PoST Datastore for Energy Efficient Mining X-BeenThere: bitcoin-dev@lists.linuxfoundation.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: Bitcoin Protocol Discussion List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 17 Mar 2021 05:59:47 -0000 --00000000000073a14405bdb5305e Content-Type: multipart/alternative; boundary="00000000000073a14105bdb5305c" --00000000000073a14105bdb5305c Content-Type: text/plain; charset="UTF-8" I wouldn't fully discount general purpose hardware or hardware outside of the realm of ASICS. BOINC (https://cds.cern.ch/record/800111/files/p1099.pdf) implements a decent distributed computing protocol (granted it isn't a cryptocurrency), but it far computes data at a much cheaper cost compared to the competition w/ decent levels of fault tolerance. I myself am running an extremely large scale open distributed computing pipeline, and can tell you for certain that what is out there is insane. In regards to the argument of generic HDDs and CPUs, the algorithmic implementation I am providing would likely make them more adaptable. More than likely, evidently there would be specialized HDDs similar to BurstCoin Miners, and 128-core CPUs, and all that. This could be inevitable, but the main point is providing access to other forms of computation along w/ ASICs. At the very least, the generic guys can experience it, and other infrastructures can have some form of compatibility. In regards to ASICBOOST, I am already well aware of it, as well as mining firmwares, autotuning, multi-threaded processing setups, overclocking, and even different research firms involved. I think it is feasible to provide multiple forms of computation without disenfranchising one over the other. I'm also well aware of the history of BTC and how you can mine BTC just by downloading the whitepaper, to USB block erupters, to generic CPUs, to few ASICS, to entire mining farms. I also have seen experimental projects such as Cuckoo , so I know the arguments regarding computation vs. memory boundness and whether or not they can be one of the same. The answer is yes, but it needs to be designed correctly. I think in regards to the level of improvement, this is just one of the improvements in my BIPs in regards to making PoW more adaptable. I also have cryptography improvements I'm looking into as well. Nonetheless, I believe the implementation I want to do would at the very least be quite interesting. Best regards, Andrew On Wed, Mar 17, 2021 at 1:05 AM ZmnSCPxj wrote: > Good morning Andrew, > > Looking over the text... > > > # I am looking towards integrating memory hard compatibility w/ the > mining algorithm. Memory hard computation allows for time and space > complexity for data storage functionality, and there is a way this can > likely be implemented without disenfranchising current miners or their > hardware if done right. > > I believe this represents a tradeoff between time and space --- either you > use one spatial unit and take a lot of time, or you use multiple spatial > units and take smaller units of time. > > But such time/space tradeoffs are already possible with the existing > mechanism --- if you cannot run your existing SHA256d miner faster (time), > you just buy more miners (space). > > Thus, I think the requirement for memory hardness is a red herring in the > design of proof-of-work algorithms. > Memory hardness *prevents* this tradeoff (you cannot create a smaller > miner that takes longer to mine, as you have a memory requirement that > prevents trading off space). > > It is also helpful to remember that spinning rust consumes electricity as > well, and that any operation that requires changes in data being stored > requires a lot of energy. > Indeed, in purely computational algorithms (e.g. CPU processing pipelines) > a significant amount of energy is spent on *changing* voltage levels, with > very little energy (negligible compared to the energy spent in changing > voltage levels in modern CMOS hardware) in *maintaining* the voltage levels. > > > I don't see a reason why somebody with $2m of regular hardware can't > mine the same amount of BTC as somebody with $2m worth of ASICs. > > I assume here that "regular hardware" means "general-purpose computing > device". > > The Futamura projections are a good reason I see: > http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html > > Basically, any interpreter + fixed program can be converted, via Futamura > projection, to an optimized program that cannot interpret any other program > but runs faster and takes less resources. > > In short, any hardware interpreter (i.e. general-purpose computing device) > + a fixed proof-of-whatever program, can be converted to an optimized > hardware that can only perform that proof-of-whatever program, but > consuming less energy and space and will (eventually) be cheaper per unit > as well, so that $2M of such a specific hardware will outperform $2M of > general-purpose computing hardwre. > > Thus, all application-specificity (i.e. any fixed program) will always > take less resources to run than a generic hardware interpreter that can run > any program. > > Thus, if you ever nail down the specifics of your algorithm, and if a > thousand-Bitcoin industry ever grows around that program, you will find > that ASICs ***will*** arise that run that algorithm faster and less > energy-consuming than general-purpose hardware that has to interpret a > binary. > **For one, memory/disk bus operations are limited only to actual data, > without requiring additional bus operations to fetch code.** > Data can be connected directly from the output of one computational > sub-unit to the input of another, without requiring (as in the > general-purpose hardware case) that the intermediate outputs be placed in > general-purpose storage register (which, as noted, takes energy to *change* > its contents, and as general-purpose storage will also be used to hold > *other* intermediate outputs). > Specialized HDDs can arise as well which are optimized for whatever access > pattern your scheme requires, and that would also outperform > general-purpose HDDs as well. > > Further optimizations may also exist in an ASIC context that are not > readily visible but which are likely to be hidden somewhere --- the more > complicated your program design, the more likely it is that you will not > readily see such hidden optimizations that can be achieved by ASICs (xref > ASICBOOST). > > In short, even with memory-hardness, an ASIC will arise which might need > to be connected to an array of (possibly specialized) HDDs but which will > still outperform your general-purpose hardware connected to an array of > general-purpose storage. > > Indeed, various storage solutions already have different specializations: > SMR HDDs replace tape drives, PMR HDDs serve as caches of SMR HDDs, SSDs > serve as caches of PMR HDDs. > An optimized technology stack like that can outperform a generic HDD. > > You cannot fight the inevitability of ASICs and other specialized > hardware, just as you cannot fight specialization. > > You puny humans must specialize in order to achieve the heights of your > civilization --- I can bet you 547 satoshis that you yourself cannot farm > your own food, you specialize in software engineering of some kind and just > pay a farmer to harvest your food for you. > Indeed, you probably do not pay a farmer directly, but pay an intermediary > that specializes in packing food for transport from the farm to your > domicile. which itself probably delegates the actual transporting to > another specialist. > Similarly, ASICs will arise and focus on particularly high-value fixed > computations, inevitably. > > > > Regards, > ZmnSCPxj > > --00000000000073a14105bdb5305c Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
I wouldn't fully discount general purpose hardwar= e or hardware outside of the realm of ASICS. BOINC (https://cds.cern.c= h/record/800111/files/p1099.pdf) implements a decent distributed comput= ing protocol (granted it isn't a cryptocurrency), but it far computes d= ata at a much cheaper cost compared to the competition w/ decent levels of = fault tolerance. I myself am running an extremely large scale open distribu= ted computing pipeline, and can tell you for certain that what is out there= is insane. In regards to the argument of generic HDDs and CPUs, the algori= thmic implementation I am providing would likely make them more adaptable. = More than likely, evidently there would be specialized HDDs similar to Burs= tCoin Miners, and 128-core CPUs, and all that. This could be inevitable, bu= t the main point is providing access to other forms of computation along w/= ASICs. At the very least, the generic guys can experience it, and other in= frastructures can have some form of compatibility. In regards to ASICBOOST,= I am already well aware of it, as well as mining firmwares, autotuning, mu= lti-threaded processing setups, overclocking, and even different research f= irms involved. I think it is feasible to provide multiple forms of computat= ion without disenfranchising one over the other. I'm also well aware of= the history of BTC and how you can mine BTC just by downloading the whitep= aper, to USB block erupters, to generic CPUs, to few ASICS, to entire minin= g farms. I also have seen experimental projects such as Cuckoo, so I know the arguments regarding comp= utation vs. memory boundness and whether or not they can be one of the same= . The answer is yes, but it needs to be designed correctly. I think in rega= rds to the level of improvement, this is just one of the improvements in my= BIPs in regards to making PoW more adaptable. I also have cryptography imp= rovements I'm looking into as well. Nonetheless, I believe the implemen= tation I want to do would at the very least be quite interesting.

Best regards, Andrew

On Wed, Mar 17, 2021 at 1:05 = AM ZmnSCPxj <ZmnSCPxj@protonm= ail.com> wrote:
Good morning Andrew,

Looking over the text...

> # I am looking towards integrating memory hard compatibility w/ the mi= ning algorithm. Memory hard computation allows for time and space complexit= y for data storage functionality, and there is a way this can likely be imp= lemented without disenfranchising current miners or their hardware if done = right.

I believe this represents a tradeoff between time and space --- either you = use one spatial unit and take a lot of time, or you use multiple spatial un= its and take smaller units of time.

But such time/space tradeoffs are already possible with the existing mechan= ism --- if you cannot run your existing SHA256d miner faster (time), you ju= st buy more miners (space).

Thus, I think the requirement for memory hardness is a red herring in the d= esign of proof-of-work algorithms.
Memory hardness *prevents* this tradeoff (you cannot create a smaller miner= that takes longer to mine, as you have a memory requirement that prevents = trading off space).

It is also helpful to remember that spinning rust consumes electricity as w= ell, and that any operation that requires changes in data being stored requ= ires a lot of energy.
Indeed, in purely computational algorithms (e.g. CPU processing pipelines) = a significant amount of energy is spent on *changing* voltage levels, with = very little energy (negligible compared to the energy spent in changing vol= tage levels in modern CMOS hardware) in *maintaining* the voltage levels.
> I don't see a reason why somebody with $2m of regular hardware can= 't mine the same amount of BTC as somebody with $2m worth of ASICs.

I assume here that "regular hardware" means "general-purpose= computing device".

The Futamura projections are a good reason I see: http://blog.sigfpe.com/2009/05/three-projections-of-d= octor-futamura.html

Basically, any interpreter + fixed program can be converted, via Futamura p= rojection, to an optimized program that cannot interpret any other program = but runs faster and takes less resources.

In short, any hardware interpreter (i.e. general-purpose computing device) = + a fixed proof-of-whatever program, can be converted to an optimized hardw= are that can only perform that proof-of-whatever program, but consuming les= s energy and space and will (eventually) be cheaper per unit as well, so th= at $2M of such a specific hardware will outperform $2M of general-purpose c= omputing hardwre.

Thus, all application-specificity (i.e. any fixed program) will always take= less resources to run than a generic hardware interpreter that can run any= program.

Thus, if you ever nail down the specifics of your algorithm, and if a thous= and-Bitcoin industry ever grows around that program, you will find that ASI= Cs ***will*** arise that run that algorithm faster and less energy-consumin= g than general-purpose hardware that has to interpret a binary.
**For one, memory/disk bus operations are limited only to actual data, with= out requiring additional bus operations to fetch code.**
Data can be connected directly from the output of one computational sub-uni= t to the input of another, without requiring (as in the general-purpose har= dware case) that the intermediate outputs be placed in general-purpose stor= age register (which, as noted, takes energy to *change* its contents, and a= s general-purpose storage will also be used to hold *other* intermediate ou= tputs).
Specialized HDDs can arise as well which are optimized for whatever access = pattern your scheme requires, and that would also outperform general-purpos= e HDDs as well.

Further optimizations may also exist in an ASIC context that are not readil= y visible but which are likely to be hidden somewhere --- the more complica= ted your program design, the more likely it is that you will not readily se= e such hidden optimizations that can be achieved by ASICs (xref ASICBOOST).=

In short, even with memory-hardness, an ASIC will arise which might need to= be connected to an array of (possibly specialized) HDDs but which will sti= ll outperform your general-purpose hardware connected to an array of genera= l-purpose storage.

Indeed, various storage solutions already have different specializations: S= MR HDDs replace tape drives, PMR HDDs serve as caches of SMR HDDs, SSDs ser= ve as caches of PMR HDDs.
An optimized technology stack like that can outperform a generic HDD.

You cannot fight the inevitability of ASICs and other specialized hardware,= just as you cannot fight specialization.

You puny humans must specialize in order to achieve the heights of your civ= ilization --- I can bet you 547 satoshis that you yourself cannot farm your= own food, you specialize in software engineering of some kind and just pay= a farmer to harvest your food for you.
Indeed, you probably do not pay a farmer directly, but pay an intermediary = that specializes in packing food for transport from the farm to your domici= le. which itself probably delegates the actual transporting to another spec= ialist.
Similarly, ASICs will arise and focus on particularly high-value fixed comp= utations, inevitably.



Regards,
ZmnSCPxj

--00000000000073a14105bdb5305c-- --00000000000073a14405bdb5305e Content-Type: image/png; name="=?UTF-8?Q?Screenshot=5F2021=2D03=2D17_BoincOverview_=E2=80=93_BOINC=2Epng?=" Content-Disposition: attachment; filename="=?UTF-8?Q?Screenshot=5F2021=2D03=2D17_BoincOverview_=E2=80=93_BOINC=2Epng?=" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_kmd06qnj0 iVBORw0KGgoAAAANSUhEUgAABusAAADiCAYAAABHsPpeAAAgAElEQVR4nOzdeXhMZ/8/8DvrbNn3 jSDEEhH7vjZF7btYai1fbVNVayktSlWrKKoe8pTqgjaPqqqlG1qqVFVtsTWoLQiJWLLI8v79kd/c ZiZn5kwiGq3367re18XMyZx7zn7OZ+5zBIiIiIiIiIiIiIiIiIioTIiybgARERERERERERERERHR 44rFOiIiIiIiIiIiIiIiIqIyUqxiXUFBAcMwDMMwDMMwDMMwDMMwDMMwDMMwpRSrxbqybhjDMAzD MAzDMAzDMAzDMAzDMAzD/NsjWKBjGIZhGIZhGIZhGIZhGIZhGIZhmLIJn1lHRERERERERERERERE VEZEQUFBWbeBiIiIiIiIiIiIiIiI6LHEYh0RERERERERERERERFRGWGxjoiIiIiIiIiIiIiIiKiM PLLFuvz8/LJuAhEREREREREREREREdFDJdSKYpmZmZgzZw6io6Oh1Wrh7u6ONm3aYPPmzQ+tUatX r8awYcMe2uc/6tauXQshBKpWrVrWTSEiIiIiIiIiIiIiIqKHyGaxLj09HfXq1YMQQjFLliwp9Qa9 8847EEKgU6dOpf7Z/xQs1hERERERERERERERET0ebBbrBg8eDCEEdDodFi5ciBMnTuCnn35Co0aN IISAi4sLUlJSSrVB06dPf+yLdbdu3cLx48dx5syZsm4KERERERERERERERERPUQiLy9P8Y2UlBQ4 OTlBCIEPPvjA7L3r16+jfPny6N69Ow4ePChf//bbb9G6dWu4u7vDw8MDnTt3xqFDh+T7eXl5eOON NxAZGQmtVgt/f3907NhRDmMs1Jlm//79iu07d+4c4uLi4O3tDYPBgPr162PDhg1mw6i1Z+rUqRBC YPz48RgzZgz8/PxgMBgwcOBAXLp0CcOHD4enpye8vb0xZswY5ObmAgCWLVsGIQQGDBiAWbNmITQ0 FDqdDl27dsXFixfl56empmLo0KEIDg6Gi4sLgoKCMHz4cKSlpQEAFi5cCCEEhg4dil69ekGn06Fb t26KPev+97//oX79+vK7NGjQAF988YXZ9z116hT69esHf39/aLVaNGjQAOvXr5fvX7hwAUII+Pr6 Yvv27WjQoAE0Gg0qVaqEjz/+WHE6ExERERERERERERER0cNjtVj3+eefQwgBR0dH3LlzR/WD1q5d CwcHB9kTz9nZGUII6PV6/PrrrwCA2bNnQwiBwMBAdO7cGdWrV4cQAv7+/rh9+zYWLVoEb29v+XcR ERE4cuRIkXFdv34dYWFhcjjjvx0dHeWz9Oxpj7FY5+LigqpVq2LAgAFwcXGRfxMREYEBAwbIouXy 5csB3C/W6XQ6GAwGdO7cGcHBwRBCoFq1asjKygIAtG7dGkII+Pj4ICYmRrbB+Dw+Y7HO1dUVTk5O cHNzw7Rp04oU63bt2gUHBwdotVq0b98ezZs3l9/3559/BgCcPHkSnp6eEELAyckJer1eFjzfe+89 APeLdc7OztDpdOjTpw8aN24s/4Y9+YiIiIiIiIiIiIiIiP5eVot18+fPhxACAQEBqh+Sk5MDPz8/ WYjKycnBzZs3ZbGqQYMGAICWLVtCCIEPP/wQAJCdnY1Ro0Zh7ty58naa9twGc+bMmRBCoHLlyrh+ /ToAID4+Hs7Ozhg6dKjd7TEW67y8vJCRkQHg/q0/3dzc5GcPGjQIQggMGjQIwP1inRACu3fvBgBc vXoVXl5eEEJg1apVuHXrFp5++mk0atQIN27cAAAkJCRACIHq1asDuF+sE0Jg586dyM3NRVpaWpFi 3WuvvWZW5AOAOXPmYNq0abJnY5cuXSCEQN26dXH16lXk5eVhwoQJskCZmpoqi3VCCCxatAgAkJmZ iYCAAAghsGLFCtV5TURERERERERERERERKXHarHu7bfflr3e1OzcuVP29Lp586Z8fd++fbI4dOXK FTz77LPy/zExMRg7diy+/fZbmD43z55iXZs2bSCEwLRp0+Rrd+/eRXZ2drHaYyzWtWnTRg5jfK1Z s2ZFXuvevTuA+8W6KlWqmLVrwIABEEJgxIgR8rWCggIkJSUhISEBbdu2hRAC5cqVA3C/WBcWFmb2 OZbFunXr1sl2lytXDsOGDcOaNWtkj8fc3FzZI3DTpk3yc3JycmRvu3Xr1pkV606dOiWHa9KkCYQQ mD9/vtVpTkRERERERERERERERKVPGJ/DZumTTz6BEAIODg64fft2kfdXr16Ns2fPArh/y0xfX1+z YVJTU2Vx6NChQ7h58ybat29f5Ll00dHRSE1NBWBfsS4mJsZmccne9hiLcF27dpXDGMffsWPHIq91 69YNwP1iXb169cw+/4UXXoAQAr179wYArFixAqGhoXKc/v7+EEIgPDwcwP1inbGnn5HSM+vGjRsH V1dXs+nm6+uLn3/+GdeuXZOvWd42NCoqSvakMy3WXblyRQ7TqlUrCCEwb948q9OciIiIiIiIiIiI iIiISp/VYt1ff/0ln/m2cuVKs/eOHz8u3/v666/x448/ysKeaU+2vXv3yuLQ1atX5etnz57FsmXL EBcXB61WCyEEXnvtNQDAjBkz7O5ZN3bsWLP2Ll++HHv27LG7PcZinbEIBygXC60V6/z8/GDaM7F7 9+4QQmDUqFHYv3+/fB7e4sWLcf78eXzzzTcQQqBSpUoA7hfrWrZsafb9lIp1AJCWloZ169bh2Wef RWBgoPzbvLw8+Ty8r776Sg5v2rPus88+MyvWGYujAIt1REREREREREREREREZcVqsQ4A+vbtK595 tmTJEpw8eRLfffcdqlWrJotV2dnZyM7OlkWhYcOGITs7G2lpabII1KRJE+Tm5uKJJ56Al5cXNmzY IMfRp08fCCEwceJEAMDs2bMhhEDTpk2Rl5eHnJycIu0yPrMuMDAQf/75J/Lz8zFy5Eh5+0p72gPg gYt1pgWuQ4cOQaPRQAiBjz/+GB988AGEEKhZs6b8HONzACtWrAjgfrGuVatWZt/Pslg3btw4hISE 4KWXXpLDLF261KxX3lNPPSWfWZeSkoLc3FyMHz9ePn/vxo0bLNYRERERERERERERERE9YmwW627c uIFatWoVuW2lEALOzs7YunWrHNZYnBJCQKPRwMnJSRaKDh48CACYPHkyhBBwdXVFbGwsGjduDAcH B2g0GjmM8fabxl5p3377bZF2Xb9+HWFhYbL3nMFgkM+oM7bJnvY8aLFOr9fL21E6OjpCCIEaNWog Ozsbhw8flq+NGjUKY8aMkb0Ivb29AdhfrNu8ebNsf8OGDfHkk0/Kz1q2bBkA4PDhw2bTwfi+EAIJ CQkAwGIdERERERERERERERHRI8ZmsQ4Abt++jddeew1Vq1aFRqNBSEgIunbtin379hUZduvWrWjT pg3c3d3h7u6OLl26mD1DraCgAIsXL0Z0dDQMBgP8/PwQGxuLXbt2mY2ve/fuMBgMCA4Oxvbt2xXb de7cOfTp0wdeXl5wc3NDo0aNzG4BaU97HrRY16hRI6xatQphYWHQ6XTo1q0bLl26JP9u9erViIiI gE6nQ82aNfHhhx/KHn+///673cU6ANi2bRtatWoFb29vuLu7o06dOkVuT3rixAnExcXBz88PGo0G DRs2xMaNG+X7LNYRERERERERERERERE9WlSLdVSUabGOiIiIiIiIiIiIiIiIqKRYrCsBFuuIiIiI iIiIiIiIiIioNLBYVwIs1hEREREREREREREREVFpYLGOiIiIiIiIiIiIiIiIqIywWEdERERERERE RERERERURkRubi6Sk5MZhmEY5l+bCxculHkbGIZhGOZh5vLly2XeBoZhGIZ5mLl48WKZt4FhGIZh HlZEXl4ecnNzce/ePeTk5CAnJwfZ2dnIyspCVlYWMjMzkZmZibt378rcuXOHYRiGYRiGYRiGYRiG YRiGYRiGYZgHjFmxzliwy87OVi3YMQzDMAzDMAzDMAzDMAzDMAzDMAzzYJHFOqXedUoFO6WU9Zdg GIZhGIZhGIZhGIZhGIZhGIZhmH9iRF5eHtQKdqZFO3uKdwzDMAzDMAzDMAzDMAzDMAzDMAzDqEfk 5+fDVsHOsminVLhjGIZhGIZhGIZhGIZhGIZhGIZhGKb4MSvWWRbsLIt2SoU7hmEYhmEYhmEYhmEY hmEYhmEYhmFKFpGfnw+1gp21wh3DMAzDMAzDMAzDMAzDMAzDMAzDMCWPKCgogK2CnbXCHcMwDMMw DMMwDMMwDMMwDMMwDMMwDxZRUFAA04KdZdFOqXDHMAzDMAzDMAzDMAzDMAzDMAzDMMyDRxbrLAt2 SkU7hmEYhmEYhmEYhmEYhmEYhmEYhmFKL2bFOmtFOxbvGIZhGIZhGIZhGIZhGIZhGIZhGKb0IwAU KdbZU7hjGIZhGIZhGIZhGIZhGIZhGIZhGObBImDCVtGOYRiGYRiGYRiGYRiGYRiGYRiGYZjSjVmx joU7hmEYhmEYhmEYhmEYhmEYhmEYhvn7YrVYxwIewzAMwzAMwzAMwzAMwzAMwzAMwzzcFKtYR0RE RERERERERERERESlh8U6KrFmzZphyZIlZd2Mv11ubi6EEDhy5EhZN4X+v6ioKKxatcru4VNTUyGE wNmzZx9am4j+qWJiYuT6tGHDBoSHh5dpe+jxNnXqVPTq1ausm0H/AhMnToSvry8MBgN+/fXXsm4O ERERERERkZlSL9bFxsZCCAEhBBwdHeHn54devXrh0qVLZsP98MMPaNu2LTw8PKDValGnTh0sX77c bJjo6Gi4uLjA1dUVderUAQDs2rULQgj4+PggLS1NDnvw4EE4OTmZ/f3ly5fx7LPPonz58nB1dUVY WBg6d+6Mr776qrS/9j/Kpk2bEBoa+sCfo1asq1evHhISEh54PH+306dPQwiB/fv3K75fVsW6gQMH olOnTqXyWbdv34YQAqdPnzZ7PTQ0FPPmzVP9+/Hjx2PgwIGl0hY1lt9babl6GMU6e6fFv8GDLg9U yNp0/Kd5FIp1D7L/+PLLL9G0aVN4eHjAw8MDNWrUwHPPPYfLly+Xcivp7/BPLNalpaWhadOmitvP c+fO4amnnoJOp4OXlxeeeeYZZGZmyvezs7MxatQo+Pj4QKvVom3btkhOTlYcz44dO+Qxt1KaNWtW 6t9t1qxZiuMaM2YMAMDJyQlbt25V/NuCggL85z//QZ06daDVauHh4YG2bdtix44dZsOZnkvodDo0 btzY7Ng9NTUV8fHxKF++PDQaDUJDQxEbG4tPPvnEaru3bduGkJAQnDlzBunp6bhz586DTwyL7/bZ Z5/BYDCU6uf+XWJjY/Hyyy8Xeb1Vq1aYPn36398gon8Ye8+NTI+tS+ucnIiIiIj+PR5KsW7ChAnI ysrCrVu3cOTIEYSHh+PVV1+VwyQmJsLFxQVTp07F8ePHcf78eXzwwQfw9vbGSy+9ZPZ5AwcOxDPP PCP/v2vXLnh6eqJFixYYN26cfN2yWHfx4kWEhoaiZ8+e2L9/P9LT03Hq1Cm89dZbaNOmTWl/7X8U Futsy8nJwcGDB80unpkqq2LdX3/9hTNnzpTKZ1krKhw7dgzXrl1T/fu/s1hn+b3/rmKdvdPi3+BB lwcqxGJd6Snp/uObb76BTqfDBx98gJSUFFy5cgXffPMNBg0ahJ9++ukhtJQetn9ase6ZZ55BSEgI XFxcFIt19erVQ//+/ZGSkoITJ06gVq1aePHFF+X748ePR1RUFJKSknDlyhUMGjQIMTExiuO6d+8e UlNTZcqVK4eFCxfK/9+8ebPUv9+sWbNQr149s/GmpqbK4petYt3o0aPh4+ODlStX4vz580hKSsKU KVPg4uKCL774Qg4XGxuLcePG4fbt27h06RIWLFgAJycn/PLLLwCApk2bom3btjh48CDS0tKQlJSE xYsXY/jw4Vbb/cYbb6BPnz6lOCXu+/333xEREQFvb28W64geU/aeG5keW7NYR0RERESWHkqxzvRk 78KFC6hYsSK+/PJLAEB+fj7CwsIwYcKEIn+7YcMGODo6ml3otFas+/XXX6HRaOSvjS2LdcOGDUOt WrWQm5tbZDzWijDr169HQECA/P/GjRuh0+nkBYg9e/bAw8MDubm5OHHiBGrUqAF3d3fo9XrUrVsX W7ZskX/722+/oXXr1vDw8ICfnx+eeuqpIr0LTSUlJaFDhw7w9vZGYGAgevXqhdTUVCQmJqJ8+fJY unQpqlWrBhcXF1y9ehXp6ekYNWoUypUrB39/f/Tp0wdXr16Vn9e8eXP4+PjA1dUVlSpVkheMLl26 BK1WCwcHBxgMBhgMBqxbtw4AcOLECXTs2BEBAQEICwvD5MmTzabf+vXrERUVBZ1Oh7p16yI4ONhq sS4+Ph6Ojo7QaDQwGAyoVasWgMJfjE+ZMgXh4eHw9PRE+/btcfLkSavTJTExESEhIZgxYwaCg4Ph 7e2NESNGICsrC8D9ost///tfNGvWDBqNBv/73/9sjmfZsmWoUKECCgoK5Hj+/PNPODs746+//kJ6 erpZIScvLw8zZ85EuXLl4ObmhrZt2xYp1m3evBn169eHt7c3qlatavPX3fn5+Zg6dSrKly8PvV6P atWqmU3HTZs2oX79+jAYDKhQoYIsSo8ZMwZDhgyRw9maX4mJiQgLC8OCBQtku/v374/s7GwAhb1W hRDQ6/UwGAyIj48HYH6R/tq1a+jfvz8CAgLg4eGBhg0bYseOHVi3bh1cXFzg7Owsl6FLly5ZHV7J 6NGjzS6ajR07Fi1atJD/nzNnDjp06FDke1tbrqKiovDKK6+ga9eu0Ol0qFy5MrZt22Z1HhiXm4UL FyIqKgp6vR6xsbH466+/5DCm0wK4v/xrtVpUrVoVgYGBNovVeXl5ePvttxEZGQm9Xo9atWrhww8/ BFDY6zcuLg5+fn4IDg7G//3f/yEjI8OsbYsXL0ZUVBQ0Gg2efPJJnDx5EiNGjICXlxf8/f2xePFi OS619WTVqlVFLvYOHDgQ48ePB2Df8qC2TAHA4cOH0bp1a+j1eoSEhKBq1ao2L7KrtRsAPvroI9So UQMGgwF169Y1uwgcHR2NpUuXyv/XqVPH7Ich7dq1w1tvvQUANreZ1rYjSsaPH4+goCC4uroiMDDQ rFeMteloae3atahYsSK0Wi28vLzQvn17mwU+W9sM43x5++23ERISAoPBgBdeeAGHDh1C+/btodVq UaVKFbNCldr4i1uss7b/AmzPP2v7SWvruT0mTpyIpk2b2hxmyJAhsheQUWhoKDZt2gTA/v3O3Llz Ub16dcXtx6+//ooWLVrA3d0dlStXxjvvvIP8/HwA6vuA4uxP4uLi8PTTT5u9lpCQgMjISBQUFKju c9WmhZKoqChMmjQJnTp1Utze5ufn45133kFkZCS8vb3RtGlT/Pbbb/J9teMX43bEYDCgYsWKqFWr VrGLdbaOwWytw2rTsziaNWtWpFiXlJQEIQSuXLkiX1uzZg28vb3l5wcEBMjjMqDwuE0IgT/++EN1 nOHh4UWK3LaWp/j4ePTq1QtjxoxBSEgIatWqpXp8O2vWLDRq1MhqG6wV606cOAEHBwd8/fXXRd4b M2YMwsPD5TRQKhz5+flh2bJluHv3LoQQ+Pbbb1Wnh9GmTZvg4uICJycnGAwGebxhz77Ynv2C0Xff fWdXsU5tOVNbh2wtw0DhOjpt2jT06NEDnp6eGD16tGqb7C3WqR17luScxZLaPsra91M7j7G0Zs0a REdHQ6/XIywszOx809Y2vCT7XbV5aqk4xzcPsk0rzrG7PdtHW/v8kuxv0tLSMHLkSISGhsLDwwMt W7bE3r17AVg/1wXur79Lly5F7dq1odVq0bRpU6u9lI3UjvWtbU+tnRspMR5j2TonN/74680337TZ XiIiIiL693koxTqdTgdfX194e3vDwcEBrVu3lgfHR48etdkrydPTE++//778v7ViHQAMGDAAvXv3 BlC0WBcQEFDktppq0tPT4ejoiBMnTgAABg8eDHd3d6xduxYAMG/ePHTp0gUAcOPGDfzyyy+4ceMG MjMzsWnTJuj1enkxLzw8HPPmzcPdu3dx+fJlvP/++1Yvxl6/fh3+/v6YM2cObt26hQsXLuD1119H cnIyEhMT4eDggBEjRuD333/HkSNHcO/ePbRr1w79+vVDRkYGsrOzMWzYMHTv3l1+5vbt25GSkoKs rCwcO3YMISEh8qRR6Vd8aWlpCAwMxIIFC3Dv3j2kpKSgTp06ePfddwEAP//8M/R6PdasWYNr167h jz/+QJUqVYrds27SpEmoW7cuTp8+jdu3b2Pq1KkIDw+3WkBNTEyEq6srpk+fjsOHD2PXrl0IDw/H 66+/DuD+yVjLli2xY8cOnDx5EqmpqTbHc+vWLbi5ueGbb76R45k8eTK6du0qlwPTYt2cOXNQqVIl 7N69G6mpqfjhhx/MluHdu3fDw8MD27dvR0FBAX777Td4enri999/V/xOq1atQuXKlZGcnIzs7Gzs 3bsXy5YtAwDs3LkTbm5u2LRpE7KysnDkyBHFYp3a/EpMTISTkxNeeuklHDx4EL/88gsCAwPlumWt B5DpRfohQ4agT58+SE1NRUZGBjZu3IjNmzcDUP71qK3hLW3cuBFBQUHy/xUrVoS7u7s8se3UqRPm z59f5HsD1nvWVa9eHYmJiTh9+jTGjh2LwMBAxXED95eb/v37Y8+ePUhKSsJTTz2FJ554QnFa/Pzz z9DpdFi3bh1u3LiBgwcPqi7/M2fORPXq1XHo0CFkZmbihx9+wPz581FQUIDGjRtjyJAhSEtLQ0pK Ctq3by+Ll8a2denSBbt375YXTr28vDBv3jycPXsWq1atgrOzs7zgq7aeqBXr7Fke1Jap9PR0BAYG 4pVXXsGVK1eQnJyMHj16qBbrbLV7y5Yt8PLywo4dO5CVlYUNGzZAq9Xi8OHDAAqLvP369QMAnDlz Bu7u7qhWrRqAwgtjHh4eOHDgAADY3GZa244o+fXXX3HmzBlkZmbi8uXLaNeuHWbOnGlzOlo6deoU jh49itu3b+PmzZuYOnWqzR7ftrYZxvkyYcIEHD58GD/++KO8UJiYmIi//voLzz77LGrWrGn3+ItT rLO1/1Kbf7b2kyXtWff111/D2dkZs2fPxu+//25W+DWyp1hnz37HuP04duwY2rVrJ7cfV65cgYeH B95//33cvXsXBw8eRIUKFeSFV1vzs7j7kx07dkCr1ZrdFrxevXpYsGABAPV9bkmLdba2t3PmzEHN mjWRnJyM/Px8JCQkICQkBHfv3gVge100bkemTJmCixcvIjk5Gb169Sp2sc7WsmVrHVabnsWhVKxb v3499Hq92WsHDx6EEAIpKSm4ceMGhBBFnqfm6ekpj0XVvrfpeqO2PMXHx8NgMGDu3Lk4fvw4kpKS VI9vZ82aBScnJ3h6esrUqFFDjtNase69996Dr6+vYruN0yApKQmAeeEoNzcXK1asgIuLizzuql+/ Pho3boyNGzfa/CGcqalTp6Jbt27y//bui+3ZLxjZW6xTW87U1iFbyzBQuI6Gh4dj7dq1OHXqFM6d O6faptjYWGg0GrP56unpCScnJ1mss+fYsyTnLJbU9lFK30+tbZaSk5Ph7OyMn376Cffu3cOpU6fk NFTbhpdkv6s2Ty0V5/jmQbZpxTl2V/sstX1+SfY3TzzxBHr27InLly8jLS0NH3/8MTZu3AjA9rmu cf3t2LEjduzYgRMnTqBVq1bo27ev1XGpHeurbU/t7VlneoxlrWddVlYWYmNj7druExEREdG/y0Mp 1j3//PO4cOECzp8/j8OHDyM+Ph6BgYG4efMmdu7cCSGE2YG+qRo1apidcNoq1p07dw46nQ579uwp UqxzcHCwefBvTYMGDZCQkIB79+4hODgY7777Lnr27AkA6NGjhzzpy8vLw3vvvYc2bdqgYsWKCAoK MivgBAQEYMyYMbh48aLqOJcuXYro6GjF9xITE4tcKD1+/DicnZ3lr3+BwpNOFxcX5OXlASg8Yere vTsiIyMRHBwMFxcXebKhdGKwbNkyNGzY0Oy1Dz74AK1btwYA9OzZE//3f/9n9n5JboPp4+Nj9tyR /Px8BAYGYsOGDXZ///nz56Nu3boArN/OUG08o0aNkhdkcnNzERQUJC8uWRbrfH19sWbNGvlZlrfB jIuLw6RJk8zGP2jQIMyYMUPxO73//vsIDg7Gjh07kJOTY/Zenz598MILLyj+nWnRSm1+KU23AQMG 4PnnnwdgX3Gmb9++aN26NY4ePVqkR4HSCamt4S1lZGTA2dkZp0+fxq+//ormzZvj6aefxuLFi1FQ UABfX1/Zi8DeYp1pL7hTp05BCGH1Fo5Ky82BAwcghMCtW7eKTIuePXti5MiRZp+htvz7+/sr/gr/ 8OHDcHBwMLs9mfFHDOnp6YptmzhxotwOGel0Ovz4448A1NeT0irW2VqmFi9eXKT3idrt69Ta3bNn T7PbHQNA79695cWezZs3y23Z22+/jalTp6JcuXI4fPgwDh06BF9fX+Tn56tuM+25LapRUlIShg0b hujoaISGhsJgMMjvaG+xLi0tDS+//DIaNmyI8uXLw9vb2+pFbMD2NkNpGjZo0MCs5+W+ffvg5OQk 543a+ItTrLO1/1Kbf7b2kw9yG+WNGzeiXbt28PDwgJOTE2rWrIn58+fL/aM9xbri7ndMtx+LFy+W wxq99957ch20NT+Luz8BgGrVqmHhwoUACi/a6nQ6pKenA1DfF5a0WGdrexsYGGjWEwsAypUrh507 d6qui4sXL0bVqlXN/rYkt8G0tWzZWocB29OzOJSKdR999BH8/f3NXjM+J/f06dM4f/48hBA4duyY 2TChoaF2rQ+WxTq15Sk+Pt5s/wqoH9/OmjULtWvXxtmzZ2UuXLgg/95asW7GjBlWe8leu3YNQgi5 TzP94Z+rqyuqVq1qthxfv34dY8eORZUqVcx1hwoAACAASURBVODo6Ahvb2/06tWryHQzZVmsK8m+ WI29xTrA9nJmax0C1Jfh4t4aHCic5s8++6zZfD179iwaNWoki3UlOfa055zFkto+Sun7qbXN0rFj x+Dg4IDVq1cXuV2s2ja8JPtdtXlqyd7jG+DBtmnFOXZX+yy1fX5x9zfHjh2DEALXr19XfN/Wua7S +rtixQqzHxZYUjvWV9uelmaxjoiIiIgeXw/9NphA4cUhg8GA//3vfzhy5Eip9awDCntENW7cuEix zt/fv9g96wBgypQpGDx4MLZu3YoePXrgxo0b8PDwwO3btxEYGIijR4/K8UZERGDr1q3yBFQIgYMH D8p2tm7dGlqtFgEBAYiPj1f8hT9QeHBvegHBlNIJ4ZYtW+Dk5ITw8HCzeHp6IiUlBVu3boXBYMCK FStw5coVFBQUoFWrVvLkSunEYNKkSTAYDGafFxoainr16gEoPAl95513zP6muMU6462LLG/lVK9e PSxatMju779u3TqEhIQAUD4Zs2c8Bw8ehKurK65du4YNGzagUqVK8iTVtFhn/CzTW9VYFusaNmwI X19fs2kXGBhY5ITUKDs7GxMnTkS5cuXg4uKChg0bYvv27bKNxvlkybRopTa/lKbbqFGj5LpkT3Hm woULiIuLg7e3N9zc3NClSxf562ylE1Jbwytp0qQJVq5ciZdffhmLFi3Cpk2b0Lx5cxw/fhz+/v5y fpSkWJeSkgIhhNkFRFNKy82VK1cghMCpU6eKTIviLv/G6WvcHpjavHkzvLy8FIc/dOiQYtumT59e ZBvh6+uL7777DoD6evKwinWmy9TEiRPRuXNns/dLUqwzbXeDBg2K/Cp+/Pjx6NGjBwDgzp07cHFx wZkzZ9CoUSMcOnQI48ePx7Rp07Bs2TLZ81ptm2nvRdkrV67A09MT48aNw5kzZ5Cbm2s2b+wt1jVu 3Bjt2rWTPb927Nhhtl+zZGuboTQNTbf3AOR+13g7MLXxF6dYZ2v/pTb/bO0nS+uZpxcvXsTq1avh 5uYm19eSFOvU9jum24+JEycW6TWyadMmeHt7A7A9P4u7PwGAhQsXyguQw4cPl8/tsmdfWBrFOtPt bWZmJoQQCA0NNfsOvr6+SExMVF0XS7IdUWJt2VJbh21Nz+Ky1rPOcvtv7FV2+fJl2bPOcp55enqa /WjIGstindrypFSsUzu+LeltMJcsWVKsnnXPP/88Ll68qFoozcrKwv79+9GtWzcEBQVZve2hZbGu JPtiNcUp1llbztTWIXuW4ZIW69Rug1mSY0+1dV6J2j5K6fuptU1JQkICoqOj4ezsbNaDSm0bXtz9 rto8VWLv8c2DbtOKe+xu67PU9vnF3d9s2rTJ6rGR2rmu0vq7du1aREREWP1uasf6attTFuuIiIiI qDT8LcW6nJwcuLi4YP369cjPz0dISEiRX6YBhb+Gd3R0xJ9//ilfUyvWZWRkwN/fH5MnTzYr1g0c OBC1atXCvXv3iozH2i0XAeCHH35AhQoVMGLECHlhpGPHjpg9e7bZbfvq1KlTpMCkdHE+Ly8Pv/zy C3x9fbFixQrFcb711lvF6ll39OhRuLq6Wi3+jR07Vp4YGZmewGzZsgXBwcFm77/33ntmzwyz1LVr 1yK/llQr1jVs2LBIwdTHx0c+vxAonD4BAQHF6llneqHIVs86tfE0atQI77zzDjp16iSf+wAU7Vnn 4eFh9otuy2Jd7969zZ4jURzXrl3DCy+8IC8Cd+jQwa6edWrzS62wYrxwYPm8QMvntBmdPn0azZs3 x4ABAwAUXhTp37+/1fFbDq/k1VdfxdChQxEZGYlLly4hJycHPj4+eP311xEXF6f4vQHl5ao0inV7 9uyBi4sLbt++DcB8WnTp0gUTJ040+wxby39+fj7c3Nxs9qwzvQBpvKhj7df8JSnWma4nn376KapU qWL2vmmxzp7lQW2Zmj9/Pho0aGD2fkmKdabt7tmzJ1566SWz943PVzJq0aIFZs+eLW8P9euvv6Jq 1ap4+umn5a0F1baZ9l6U3bhxo7xYZ2Q6b6xNR1MZGRnyYrCRWrHOlOU2o7gXDe0Zf3GKdbb2X/bM P0B5P6m0ntvD2i3F2rZtK3uHjxw5ssiv59WKdWr7nV27dsHZ2Rm3b9/G4sWLUbt2bbO/X7JkSZGC OVB0fpZkf5KWlgadTidvV2j64xK1faHatFCitr318/PDDz/8oPi3auviggULivRoKUmxzshy2VJb hwHb07M4bD2zznTf9Omnn8LLy8vsmXUff/yxfP/ixYtWf/xhybJYp7Y8KRXr1I5vS1qsS0pKgoOD Q5HeRUDhcWu4yjPrjHJychR7ZP3888+y6KnEWs+64uyL1RSnWGdrObO1DtmzDD+sYl1Jjj3V1nlL 9uyjlL6fWttsuXv3LlavXi1/cKG2DS/Jj2RszVNr7Dm+Kc1tmj3H7rY+S22fX9z9zb59+yCEULz9 rNq5bkmKdWrH+mrbU7VzIyPTYyylc3IiIiIierw9lGLdhAkTkJWVhbt37+LkyZMYMGAAKlSoIG8v 9/nnn8PV1RWvvvoqTpw4gQsXLmDVqlXw8fEpcpCvVqwDCm/DpdVqzYp1Z86cgb+/P5544gns2rUL qampOHHiBObNm4cnn3zSavuzs7Oh0+ng7+8vL9obf5Vv+mu5vn37on379jh37hySkpIwePBgeTHj 7t27GDVqlHxWQ3JyMsLCwrB+/XrFcV6+fBne3t6YM2cO0tPTcenSJcydOxd//vmn4gmh8deDffv2 xZ9//onMzEwcO3YMb7/9NoDCW2yFhYXhjz/+wIULF/DGG29Aq9XKE5ikpCQ4Ojpi//79yMjIwI0b N3D16lX4+fnhjTfewNWrV3Hr1i3s3btXnkysXLkSvr6+2LZtG44fP4758+fD3d3dZrGub9++6NOn D+7cuYPz588DKDyRqV27Nk6dOmX3M+t8fX1x4MAB3Lx5E99++y38/PzktLR2McWe8axatQrly5eH Xq83OxG0LNYNHjwY9evXx8GDB3HgwAG88MILZsW677//Hp6envjiiy9w69YtXL16FVu2bDF7Jp6p 5cuXY82aNUhNTUV2djZmzpwpL3Zv3boVbm5u+Oqrr3D37l0cO3ZMXjwxLVqpzS+1wgpQeEFw4cKF 8pk+gPkJ5Msvv4wdO3bgzp07SE9PR6dOnTB69GgAhctYREQErl69isuXLyMnJ8fm8Ep+/PFHuLm5 oXnz5vK1YcOGwc3Nzexio2WxTmm5Kmmxbs2aNUhPT8exY8fQpEkTs/aaTov//ve/CAoKwq5du/DX X38hISEBXl5eNpf/yZMno3r16jh48CAyMzOxc+dOvPvuuygoKECjRo0waNAg3Lhxw+pzcopbrLO1 nhw6dAgODg7YuHEjTp06hUWLFsHb21sW6wD15UFtmTpx4gScnZ3x0Ucf4eLFi9i8eTOioqJUi3W2 2r1lyxZ4enpi+/btZs8/Mb2IN3PmTLi5uWHatGnytYoVK8LNzU32cFPbZtp7UfbYsWNwcnLCxo0b ceXKFaxduxYhISFm80ZpOpoqKChAYGAgpk6dipSUFPz0009o1KiRzWKdrW1GcS8a2jP+4hTrbO2/ bM0/tf2k0np+6dIlxMbGWt22AoXb69GjR2P37t24fv06Ll68iOXLl8NgMMjbjS1evBihoaH4448/ 8Mcff+Cll16Ck5OTWbHOnv2Ocftx5MgRNGjQQG4/UlJS4OHhgSVLluDu3bv4448/zJ53ZGt+Fnd/ YjRkyBD4+PgUuQ2c2r5QbVooUdvevvrqq4iOjsbevXuRmZmJs2fP4sMPP8Tp06dV18XTp0/D2dkZ S5cuxenTp7Fu3TpUrly5WMU6W8uWPeuwrelZHErFOgCoW7cuBg4ciIyMDJw+fRrR0dHydsJA4UXo qKgonD9/HqmpqRg8eDCioqLsukWdZbFObXlSKtbZOr4F7CvWffbZZ0hNTTWLcXy+vr5YtWoVLly4 gBMnTmDatGlwdXXFF198IT/DVrHu+PHjiImJwcqVK5GcnIwbN25g//79iI2NtXl8r/TMuuLui9UU p1gHWF/ObK1D9izDlutov3795DpmjT3FupIce6qt85bs2UcpFevU2mZp165dmDt3Ls6dO4e8vDx8 //33cHFxwZUrV1S34SUp1tmap9bYc3zzoNu04h672/ostWO24u5v8vPz0bRpU/Ts2RMXL15ERkYG 1qxZg40bN6qe65akWKd2rK+2PVU6N1JieoyldE4O8Jl1RERERI+zh1KsE0LIeHp6okuXLkV6Gnz3 3Xdo06YN3NzcoNFoEBMTg/fff9/sYkSdOnWg0Wig0Whkjw2lYl1ubi6qVatmVqwDCp9pN2TIEISE hMDZ2Rl+fn7o1q2b4q96TbVt29bs13o3b96ERqPBypUr5Wvnz59Hq1atoNVqERkZiUWLFsmLGffu 3cOQIUNQvnx5aDQaVKhQAXPmzLE5zt9++w1PPvkkPD094efnh969eyM1NVXxhBAofF5HfHw8KlSo AK1Wi0qVKuHFF18EANy7dw9Dhw6Fm5sbgoKCMGbMGNStW9fsJHLixInw9PSEm5ubPEk6evQounXr hsDAQOj1esTExMiLPnl5eZg8eTICAgIQFBSE0aNHIyYmxmax4siRI6hVqxZcXV3lr12zs7MxefJk lC9fHp6enmjfvr3NXiiJiYnw8PBAkyZNoNPpULlyZbMLUdYuptgznszMTHh7exe5ZYllse769evo 1asXPDw8UKVKFSxYsKDIrVw3bdqEJk2awNPTE15eXmjdujV27dql+J22bNkiLzx4enqibdu2Zs9Z Wbt2LWrXrg29Xo/w8HBZULEsWtmaX/YU6z777DOEhobC1dUVU6ZMAWB+Ajlv3jxUq1YNOp0OAQEB GDp0qCy43759Gx06dJCF7atXr9ocXsm9e/dgMBjMfsG/bds2CCFw5swZ+Zrl91ZarkparGvatCnc 3Nzk841Mi7mm0yIvLw+TJk1CQEAA3N3dMXLkSERHR9vs+ZOTk4MZM2agUqVK0Ol0iI6OxurVqwEU Fjj69u0LPz8/BAUFYeTIkfJ2YyUt1tlaTwDgjTfekOOLj49Hx44dzYp1asuDPcvUp59+ioiICGg0 GrRt2xa9e/e2+Stje9r90UcfoUaNGjAYDKhTp06R7bexN4VpAc+47puytc0szkXZRYsWwd/fHx4e HujRowcGDhxoNm+UpqOlHTt2IDIyEjqdDk2aNMErr7xis1hna5tRkouGauMvTrEOsL7/AqzPP7X9 pNJ6bny2l60eIzt37kT//v3lemcwGBAbGytvMwkUXgSLi4uDu7u73KYHBQWZFevs2e+0adMGHh4e CAwMxNixY816juzbtw/NmzeHu7s7IiIiMG/ePPl8IbV9QHH2J0Z79+6FEAIffvih2etq+0K1aaFE bXubm5uLBQsWoEaNGtDpdAgODkbv3r1l8drWugjcv6Dq6emJrl27ol+/fmbFuk8++UTxVpFGasuW 2jpsbXoae7hZu223Uc+ePeHr6wtnZ2fo9Xr4+vqaXXBNTk5G27ZtodVq4eXlhWHDhpn1CM3MzMSI ESPg5eUFrVaL2NhY1VvrGlkW6wDby5NSsc7W8S1gX7HO9DzAGKCwELN06VLUqlULGo0Gbm5ueOKJ J4r0OLJVrLtz5w5mzZqFhg0bws/PD87OzihfvjymTJli9lw0S5bFOqD4+2Jr9u7dC19fX3h4eEAI AV9fX9SpU8euv1Nab9XWIbVl2HIdDQ0NLTKfLdlTrAOKf+wJqK/zltT2UdZ6Dtpqm6XTp0+jQ4cO 8Pf3h06nQ+3atbFx40b5vq1teEn2u2rzVIm9xzcl3aYBto/1rbH2WYDtY7aS7G9SUlIwePBgBAUF wd3dHa1atcK+fftUz3VLUqyz51jf1vZU6dxIieVdTJTOyY235H3zzTettpeIiIiI/p1KvVhHVJqs nfgTlbXIyEhs27atrJsB4NFdT0aOHInJkydbff9RbTc93tSWy5L0uHnYvv32W/j6+tp9q7l/ssGD B9vsQVUalKbnypUr4eXlJe+6QPSgHqf1lspWaS5rj9Ny+ygd6xMRERHR44HFOnqk8WI+PQru3r2L Tz75BGfOnMG1a9cwf/58BAUF4c6dO2XdNACPznqybt06HD16FGlpafJ2SPv377c6/KPSbiJT/8Ri XceOHTFhwoSybsbfIjg4WPGZaKVJaXr269fPam8vopJ4nNZbKluluaz9W5fbR/1Yn4iIiIgeDyzW 0SONF/PpUZCRkYHo6GjodDp4eHigdevWOHDgQFk3S3pU1pN+/frJW7dFR0erPmvjUWk3kal/WrHu 5MmTcHJyQnJyclk35aE7fPgwoqKiHuo4lKZnQUEBQkJCcPHixYc6bnp8PE7rLZWt0lzW/s3L7aN+ rE9EREREjwcW64iIiIiIiIiIiIiIiIjKCIt1RERERERERERERERERGWExToiIiIiIiIiIiIiIiKi MsJiHREREREREREREREREVEZYbGOiIiIiIiIiIiIiIiIqIywWEdERERERERERERERERURlisIyIi IiIiIiIiIiIiIiojLNYRERERERERERERERERlREW64iIiIiIiIiIiIiIiIjKCIt1RERERERERERE RERERGWExToiIiIiIiIiIiIiIiKiMsJiHREREREREREREREREVEZYbGOiIiIiIiIiIiIiIiIqIyw WEdERERERERERERERERURlisIyIiIiIiIiIiIiIiIiojLNYRERERERERERERERERlREW64iIiIiI iIiIiIiIiIjKSKkX63x9fSGEwNSpU81e12g0EEJg1qxZpT3KIjZu3AghBIQQKFeuHPLz8x/6OP9O f/75J4QQcHd3L/FnjB8/Xk4jy2zatAkA0KtXLwgh8Mwzz5RW09GoUSMIITB9+nSz152cnCCEwJIl S0r82Tk5OXjrrbdQu3Zt6HQ6aLVaVKlSBc8//zwuXbr0gC3/+yhNo127dsn5c+TIkb+lHQcOHECf Pn0QGBgIZ2dn+Pj4IDY2Fp9++ikAYMmSJRBCICIi4qG3ZevWrfL75+bmlvhzQkND8csvvxR5PT8/ H0lJSVi3bh30er3ZemA0depUq+tMaGioHC4iIkJxmPDwcKvtMl0fLbednTp1ku99/PHHAJSXB+O2 1ziM0vwpjfWMiIiIiIiIiIiIiErXv7JY17VrV7OL5Fu3bn3o4/w7ZWVlQQiBatWqlfgzjMUBjUaD Vq1amWXPnj0A/t5i3YABAxAXF4dvvvmmRJ+bk5OD1q1by3keFhaGJk2awNPTE0IIJCYmlkLr/x5K 0+jEiROIi4tDXFwcLly48NDb8PXXX8PFxQVCCLi6uqJ+/fqoXr06hBCIiooC8M8q1u3evRszZsyA wWBA3759MXfuXLmcA0B6errVorXRqlWrEBsbaxZvb+8ihThjsS4yMtJs2IEDB1ptn2mxztvbG7du 3QIAHD582KxNxkKc0vJgT7HuQdczIiIiIiIiIiIiIip9ZVasy8rKwtSpU1GlShVotVr4+vqiYcOG +O677wAU9nT54IMPUK9ePXh4eCAoKAi9e/fGuXPnbI4/JSUFzs7OEEKgSZMmEEKgd+/eZsMYL2KH hIRg0qRJqFChAvR6PYYPH46TJ0/i6aefhru7O0JDQ7F69Wr5d0uXLkVkZCQ8PDzg7OyMwMBAxMXF 4cqVKwCADRs2WO15c/z4cQDAsWPH0KNHD4SEhMDNzQ0xMTFYvny57P1n2raXX34ZFSpUgJubG7p0 6YK0tDTZFmMvJ6Nz585hyJAhCAsLg0ajQXBwMNq2bWu1sGMsDtjq7WNZrLt16xaaNm2KoKAguLi4 QK/XIyYmBh9++KFd7YiNjS0yXYwFDMtCAwDs3LkTnTp1QlBQEPR6PaKiovD+++8rttU43YQQmDlz ppyemZmZmDFjhizY3rhxA6NHj0ZERAR0Oh2qVKmCiRMnIiMjAwBw5MgR+TnTp09HrVq1oNVq0bx5 cxw/fhzTpk1DcHAwvLy8MHr06CLjDwoKwnPPPYdy5crBy8sLAwcOlIUX095Q6enpAICPP/4YQgh4 enoCgNVpZNou4zw1zp8nn3wS/fv3R0BAAHx8fDB+/HizabN8+XJERkZCp9Ohfv36KFeunOI6apST k4Pg4GAIIVChQgWcPXtWvrd//36MGDHC7DubFoPUpq890wAALl++jLi4OOj1evj7+8t12bRYl5iY KF+7ffu24ncBgGHDhimukzExMXKYe/fuITExEatXr7ZarLN08uRJuLq6QgiBOXPmyNeNxbqFCxfa /HtTlj1d582bB6CwuKZUrFNaHuwp1imtZ5s3b0azZs3g7e0NX19ftG7dGtu3b5fv27ucERERERER EREREVHJlFmxzngBvUaNGpg+fTpefPFF1KhRQ16kHjt2LIQQiI6Oxn/+8x/ExcXJ/9vqWTN37lwI IdCgQQN8//33smdQamqqHMa0sNO4cWO0a9dO/l+r1aJ79+6IioqS/zcWySZNmoQOHTpgwoQJePHF F2VBo2vXrgCAP/74A6NGjZJxc3OTBZwbN27g5MmTMBgMEELgqaeewujRo+Hu7g4hBCZPnlykbQ0b NkT37t3lretefvll+R1mzZqFVatWAQAKCgpkgaB9+/aYOXMmRowYAX9/f+zfv19xOhmLA1qt1qz3 T4cOHeQwlsW669evo2rVqhg+fDimTJmCzp07QwgBBwcHHDhwQLUdn3zyCcLCwiCEQJs2bTBr1ix8 +eWXZsuNsYiwYcMGODg4QAiBFi1aYNSoUahZsybat2+v+H2efPJJWXwsKChQHCYnJ0fO15o1a2Lc uHGoXLkyhBBo2rQpCgoKzIogERER6NWrF7RarfyerVu3xhNPPCGH2bJli9l8c3V1xfDhwzFp0iR4 eHhACCGLevYUqqxNI1vFOmdnZ3To0AHNmzeXwxiLkx999JF8rXnz5hg8eLBsl7Vi3e7du+XfrFy5 UnEY0+9sLAbZM33tmQZ5eXmoX7++7GU2YMCAEhfrrly5IofZsGED6tWrh+3bt+P3339HQkJCkeFN e9ipFeuMy1yVKlWQk5MjXze9DaaTkxNCQ0PxzDPP2LwVq3F9jImJgZubG0JCQnD8+HE4OTmhRYsW D61Y9+mnn8plaPjw4RgwYAAcHBzg4OAglyF7ljMiIiIiIiIiIiIiKrkyK9bVq1cPQgjUrl0bCQkJ 2Lt3L+7du4f09HRkZGTIW/Dt2LEDt2/fxo0bN+Rr1gpQABAZGQkhBN577z3k5+fLXkQLFiyQwyhd xK5ZsyaEELK3iPG5cEII7Nu3Tw53+fJlfPXVV0hISECfPn0ghPnzqoyMxUZvb28cPnwYADBu3Dh5 cd9YUFqwYAGEEDAYDMjNzVVsm3E8HTt2VPzOt27dkoWtnj17Ys2aNUhKSkJWVhaysrIU/8baM+s0 Go0cRuk2mHl5edi7dy8+/vhjLF68WBYbExIS7GqHtdtgWhYRGjZsCCEEunXrJocpKCjAb7/9pvh9 oqOjZZHQmq+++qpIgeP333+Xr/3yyy+KRZAXXngBQgjUq1dPfpaxoPbWW28BUF6mZs+ebbZ82Nur TGka2SrWmc6fgIAACCHw9ttvAwBq164t54fl51sr1q1fv95smlhj+Z3tmb72TAPTW14a57fSbTDP nj2LhIQEJCQkWC3g5+XlISQkBEIIBAcHw93dHUOHDsVXX32F7OzsIsPbW6xbs2aNHG7z5s1m77Vp 0wYdOnTAgAED0KJFCzg6OkIIgTp16lj9POP62KpVK7z44osQorBXo7HI+LCKdXXr1oUQQvaWBO7f Rti4LtmznBERERERERERERFRyZV6sc7f3x9CmPcCKygokLemfOONNwAUPhPL+DwxYwICArBjxw4c O3ZMsZBkjLXnj/30009ymKeeegpxcXEIDw+HEPefswUoX8Ru2bKlWbEuLS1NftauXbsAFBbbHB0d 4ejoiEqVKqFKlSoQQiAwMNCsHTNmzIAQAnq9Hj///LN8vXfv3hBCoHPnzvK1b775Ro7n6tWrim0b PXo0hBBmt720NH36dDmNjYmJibHam6ckt8E8duyYLCB4enqiTp060Ol0EEJg2bJldrXD3mKdcTmy txjQpk0bCCFQvXp1q8O89957EELAzc1NvpaTkyPb+dlnnykWQV577bUixbpatWpBiPvFZ6X5tmrV KghR2LsKMC/WGXtrlnaxzli0NLbLWKh65513iny+tWLdjz/+KMe1bt06q9PT8jvbM33tmQYrVqyA EIUFbKMHeWbdyZMnMWDAAFlgMiY8PBznz583G9aeYl1GRobsVdulSxfV8b/55pvyM9XWx1atWuHM mTOyN23dunXN2lTaxTo/P78iy8eUKVPM1iV7ljMiIiIiIiIiIiIiKrlSL9YZe/K0bNlSPjfsl19+ kReWP/roIwDA6dOnkZWVhe+//x4LFixAxYoVIYRAu3btkJ6eLi9Wz5s3D7t27ZLZvn07Ll68qDju IUOG2Czy7d27F4DyRexWrVqZFetML5Dv2rULycnJ8v/btm0DcL/IYFqsW7hwIYQQcHFxKXKLOGPP usjISNmzzljgsNWzbsyYMTaLdXfu3EFKSgpSU1Px5ZdfYvr06fLWjabP0jJVkmLdoEGDIEThbSnv 3bsH4P4t/5YtW2ZXO4y3M3zllVfMxmVZRDD2vLR83uCBAwcU2zpv3jw5f9588005fbOzs/HWW29h 27ZtZj2/jMvQ0aNH5WvWetZNnz69SLEuJiZGtVj3/PPPQwiBihUrAgD27dsnP/vUqVMAlIt1StPI 3mKdZbsaNGgAIcx7Thl7LVor1mVnZ8v5UalSJbOC1uHDhzFq1CjF72zP9LVnGmzevBlCCDg6Osre dyXtWWf8PkaVKlXCokWL5PezfK6ccFPgGgAAIABJREFUPcU6Y883jUaD5ORks/cuXryIzz//HHl5 eQAKf6hg7Jnp4uJi9XadpsU6AHjmmWcQHh6Ozz///KEW65R61hl/VGCrZ53lckZERERERERERERE JVfqxbr//ve/8iJypUqV0LJlS9n7qly5csjIyAAAlCtXDm3atMHUqVMxe/ZsWfSZMmUKACA+Ph5C CHh4eKB///4YPXo0evXqhYCAAMVb82VkZECv10MIgU8//dTsPWMvkJEjRwIoWbHu2rVrssfYgAED MHv2bHnrTGOxbuPGjfI2kBERERgyZIjMqVOncOLECdnGJ598Es8995x8rp2xMFOSYt3p06eh0+nQ p08fvP7665g6daocj7GwaMlYHNBoNGjVqpVZ9uzZA6DoRXpjO4KDgzFnzhyMHDlSTpNly5bZ1Y7+ /ftDCIGQkBBMmTIF69evB1C0iJCYmCinZatWrTBq1CjUrVvX6m0uMzMzZRHKWIRs1qwZfHx8IERh b8ycnBxUr15d9hp68cUXUalSJQgh0KxZsyLPrCtJsc5gMOC5555D165dZfuNt2BNS0uTt4OtXbs2 hg4diqCgoCLFOqVpVNJi3VtvvSX/rmXLlrJXnRAC06ZNU5yWAPD555/L2zdqNBo0atRIrkfGXqpK z6xTm772TIO7d+/KnmtNmjTBq6++ajZvi/PMOgDQ6/Xo2bMnZsyYAX9/fzz99NPQaDRwdHTE7t27 5fITHx+PkSNHys/s1KkT4uPjZVERKLytp/GHBErTb//+/RCisHdhrVq1ZM9GIQTi4+OtttGyWGfq YRbrjIVSJycnDBo0CHFxcfKZdcZ1lsU6IiIiIiIiIiIiooer1It1APDJJ5+gSZMmMBgM0Gg0qFy5 Mp5//nmzHnETJ05EjRo14O7uDoPBgBo1amDOnDmyR0p+fj4+/PBDNGnSBP7+/nB1dUVYWBj69eun eCu55cuXy8LCrVu3zN6bOXMmhBBwd3fHnTt3SlSsAwovbJcvXx4ajQYtWrSQBUVjsc70dneWMX7G kSNH0K1bNwQHB8NgMCAmJgYrVqyQvRBLUqxLS0tDnz59ULFiReh0Onh5eaFp06ZWbxcKWH9mnWmP IsuL9NevX0fnzp2h1+sRFBSEyZMny2cCLlu2zK52nDx5Es2aNYNer4dGo8G4ceMAFC0iAMD27dvR rl07BAYGQqPRIDIyEosXL7b6nTIzM/H666+jZs2a0Gq1cHZ2RmRkJMaNG4eUlBQAQGpqKuLj41Gp UiXodDpUqVIFkyZNksvMgxbrPD090ahRI2i1WkRERGDJkiVmbTQuQ25ubmjWrBmGDRtWpFinNI1K WqzLycnBpEmTEBoaCg8PD3Tv3h2BgYEQomivMkt79uxB9+7d4e/vD0dHR3h5eaF9+/aywKq0rKpN X3unwW+//YYGDRpAr9cjOjpaDlOSYl3Xrl1RsWJFGAwGCCGg0+lQr149fPHFF3IY0/XdMjt27ABQ 2EvOWOwsX7487t69W2Rcly9fRo8ePRAaGgpnZ2d4enqiXr16ePfdd+U6rqSsinVAYY/Ipk2bwsvL Cz4+PmjdurX8zgCLdUREREREREREREQP20Mp1hE9bpQKI4+CM2fOoHPnzhgxYgRGjRoln+2ndAvH x0FoaKhiz1wiIiIiIiIiIiIiorLCYh1RKXhUi3Xnzp1DTEwMvLy84OzsjICAAHTq1Ene/vFxw2Id ERERERERERERET1qWKwjosdG7969cezYsbJuBhERERERERERERGRxGIdERERERERERERERERURlh sY6IiIiIiIiIiIiIiIiojLBYR0RERERERERERERERFRGWKwrQ7m5uRBC4MiRI2Uy/l69eiE1NbVM xv1v9t1338HX17dEfxsZGYnt27cjNTUVQgicPXu2dBtHRERERERERERERESPlMeuWBcbGwshBIQQ cHR0hJ+fH3r16oVLly797W15VIt1586dw1NPPQWdTgcvLy8888wzyMzMVP28nJwcvPjii+jUqVOR 97KzszFq1Cj4+PhAq9Wibdu2SE5OLpXv8agpabFu586dqFKlCgCwWEdERERERERERERE9Jh4LIt1 EyZMQFZWFm7duoUjR44gPDwcr7766t/elrIq1q1btw4NGzaEXq9HSEgImjVrhq+++ur/sXfnYVXU /f/HB9k5wAEB2URcEBXCDcVdMVJcbitFxaUkzaWvaKbkUuZPrTTLMpfSksrSXLrVzEzN7pRutdsl FVNRAVFzAfeNBFTg+fvD68zNOZwNxPDO9+O6znV1ZubMfOYzn/k0zovPjDo/MjKS/v37k5OTw/Hj x2nYsCEvv/yy2XV++umn1KhRA41GYzSsS0pKIjw8nKNHj3LhwgWef/55GjVqVOH79igob1g3cOBA 3n33XUDCOiGEEEIIIYQQQgghhBDicfFYhnUTJ05Uv589e5ZatWrx3XffqdOSkpLw8/PDwcEBX19f vZFlRUVFTJ48mRo1auDi4kL9+vVZsGCB+tuNGzfSrFkzPD09qVevHl9//bU6r7CwkOnTpxMUFISr qyudOnWyGNZlZ2cTHx+Pt7c3/v7+DB8+nJs3bwL/DXQ+/vhjGjdujJOTE61btzY7Ym379u34+Phw 7Ngx4uLiuHTpEtu3b+fbb78F4OjRoyiKwoULF9TfrFixAk9PT4qLiy3W7+TJk42GddWqVWPVqlXq 9/Pnz6MoCgcPHjS5rvDwcEaPHk3Hjh1xcnIiPDycbdu2qfOvX7/OiBEjCAoKwsfHhz59+nDx4kW9 uvnss89o06YNjo6OrFmzxuR2JkyYQPfu3XF2diYkJIQff/xRnV9QUMBrr71GcHAwWq2W2NhY0tPT 1flXrlzhueeew9PTE29vb9q1a6cX1hUVFfH+++8TGhqKp6cnrVu3Zt++fXpluHbtGm5ubqXKv3jx YiIjI40eW3NtAyA4OJh169ap3zMzM1EUhdzcXAASExOJi4tjzJgxBAQE0LBhQ5PHQgghhBBCCCGE EEIIIYQQD8djGdY5Ozvj5eWFp6cnNjY2REdH64Uge/fu5eTJk+Tl5ZGdnU3nzp2ZPn06AEuWLCEk JISsrCwKCgrYvXs3ixYtAmDnzp24u7uzbds2iouL2bdvH1qtlgMHDgAwc+ZMateuzc6dO7l8+TJb t241G9YVFxfTsmVLEhISuHbtGjk5OcTGxtKnTx/gv4FOt27dSElJ4fjx43To0IG+ffua3P+PP/6Y sLAwiouLjT4Gc+3atbi4uOhNS01NRVEUcnJyLNavsbDu6tWrKIrC3r179aZrtVpWrlxpcl3h4eE0 a9aMH374gczMTCZNmoSnp6caSHXu3Jl+/fpx8+ZNCgoKGDx4MM8++6xe3bRv356UlBTS09NNvp8v PDycBg0asHr1ajIzMxk7diy+vr7q/AkTJtC0aVMyMzPJzc1l8uTJBAcHqwFubGwsXbp0IT09nQsX LjBjxgy9sG7mzJk88cQTZGVlUVRURHJyMgEBAdy+fVtdZt68ecTFxanfLR1bS20DrAvrNBoNs2bN 4tixYxw9etTksRBCCCGEEEIIIYQQQgghxMPxWIZ1I0eO5OzZs5w5c4ZDhw6RmJiIr68vN27cAO6P Lhs8eDAREREEBgai0WjUIGXhwoX4+/uTkpLCnTt39NYdHx/PhAkT9KY9//zzTJs2DQAvLy9WrFih zrP0GMxDhw5hY2OjlgvgyJEjKIrC9evXjT4qcfHixYSFhZnc/4sXL1KvXj0iIiKoVasW8+fP58yZ M+r8pUuX4uPjo/cbXciTmZlpcr06xsK6M2fOoCgKaWlpetMDAwNJTk42ua7w8HCWLFmifi8sLMTT 05Pvv/+eY8eOYWdnpzeSLCsrC3t7ewoLC8v0GEnD7WRkZKAoCpcuXQKgatWqeo8JLSoqwtfXl3Xr 1nHo0CEURSE7O1udb/gYTF9fXzZt2qS3zaCgIH755Rf1+xNPPMGWLVvU75aOraW2AdaFdQkJCRbr RwghhBBCCCGEEEIIIYQQD89jGdaVfAwm3A9fNBoNa9as4cKFC2i1WsaNG8fJkye5d+8eU6dO5Zln ngHuPxJx/PjxBAUFYW9vT1RUlPpoxqioKLy8vAgODlY/vr6+jBkzhtu3b6Moit7jDy2FdRs3bsTD w0NvWm5uLoqi8PvvvxsNdFauXEmdOnXM1kFhYSFbt26lcePGdOvWDRcXFz777DPg/sg6w23qRtaV DKRMMTeyzvCRl1qtVi+8NGQYogHUr1+fxYsXs2nTJmxtbfXqWveYypycnAcK63JyclAUhbNnz6rH zbDskZGRzJs3j40bN+Lq6qo3r2RYl5eXh6IoBAYG6pXTy8uL1atXA7Br1y5q1qyp95hRS8fWUtsA CeuEEEIIIYQQQgghhBBCiP8FEtYBd+7cwd7enrVr17J+/Xo8PT315pcM60q6dOkSo0aNIiAgAIDe vXszZcoUk9t2d3fXG6Fl7cg63UgpgMOHD5sdWWdNWKejewzmnDlzaNKkCfDfd9adPXtWXW758uV4 eHg88Dvrli1bpn4/d+4ciqKQmppqcl2GIVp+fj6urq5s3ryZI0eO4ODgQH5+vtHfVlRYB/dH1pV8 p2FhYSHVqlVj3bp1HDhwABsbG70RfoYj67y9vdm6davJ7Q8ZMoS33nrLYvlLHltLbQOgbt26LF++ XJ0vYZ0QQgghhBBCCCGEEEII8eh5LMO6V199lfz8fG7fvk16ejoDBgygZs2a3Lp1i7S0NGxtbVm/ fj0XLlxg5cqVBAQEqGHdp59+yooVK7h8+TIFBQVMnz6diIgIAH7++We0Wi3ffvstt27d4uLFi2za tEl9vOGgQYNo1qwZqamp7N+/n1GjRll8Z12LFi14/vnnuXr1qsl31pUlrFu1ahXr16+noKCAuLg4 zpw5w3PPPcewYcPUZZo2bcrAgQO5efMmmZmZREREMHLkSHX+pk2biImJ4cKFC6XWbyqsGzt2LOHh 4Zw5c4bLly8zaNAgwsPDzQaA4eHhvPLKK1y4cIFz584xZMgQmjRpQmFhIcXFxeo73E6cOEFeXh5p aWm89957JuvG3HbMhXUTJkygcePGZGRklHpn3b1796hTpw5DhgwhPT2dbdu2ERMToxfWTZkyhYiI CHbv3k1eXh6nTp3iyy+/JDMzk1u3bqHVajl37pxemSwdW0ttA6BXr1507tyZU6dO8e9//5uuXbua DeveeecdBg4caLG+hBBCCCGEEEIIIYQQQghRcR7LsE5RFPWj1Wrp0aMH6enp6jLz5s3Dx8cHd3d3 evbsycCBA9WwbtOmTbRo0QKtVotWq6VTp05672LbsGEDrVq1QqvV4uHhQXR0NDt27ADgypUrxMXF 4e7uTt26dZkzZ47ZsA4gOzubvn374u3tjZ+fH8OGDVNHcZUnrNuyZQvt2rXD19cXBwcH6tSpQ1JS Erdv31aXycrKolOnTjg5OeHh4cHgwYP15icnJ5fa7gcffICXlxfOzs7Y29vj5eXFqFGj1Pl5eXkM HToUDw8PnJyciImJsfgOvPDwcKKiovD19cXNzY1nnnlGL9S6cuUKiYmJ1KxZEycnJ2rXrs3LL79s sm7MbcdcWFdQUMCkSZOoUaMGWq2W2NhYvfZy8OBBoqKi0Gg0REVFMWnSJL2w7t69e8yZM4ewsDCc nZ3x9/end+/eZGdn8+mnn9KjR49SZbLm2JprG3B/JF2rVq3Ucs2fP99sWDdw4ECCg4Mt1pcQQggh hBBCCCGEEEIIISrOYxfWif/SPQbzUWXsnXV/N82aNWPDhg2VXQwhhBBCCCGEEEIIIYQQQlQSCese YxLWVa4///yTN998k8LCwsouihBCCCGEEEIIIYQQQgghKomEdeKR9XcP64QQQgghhBBCCCGEEEII ISSsE0IIIYQQQgghhBBCCCGEEKKSSFgnhBBCCCGEEEIIIYQQQgghRCWRsE4IIYQQQgghhBBCCCGE EEKISiJhnRBCCCGEEEIIIYQQQgghhBCVpMLDusjISBRFUT+2trb4+fnxwgsvcO3atTKtKyYmBkVR iIuLA2DBggUoikKdOnVM/mbz5s3qtu/du/dA+1IW1pStrPLz89V9SUlJqbD1llVycjKxsbFG5126 dIk9e/YQFxeHoihERkaWWua7774jOjqa6tWr4+joSPXq1UlISODs2bNWl2HWrFlqXXz44Ycml8vN zVWXc3Nz02tzv/32mzqv5HGytbVFURQWLFgAGD+WXl5eKIrCsmXLgNJtUwghhBBCCCGEEEIIIYQQ ojweWlgXHBxMXFwcUVFRakDyyiuvlGldb7/9NvHx8Wo4I2HdX+vGjRssXryYTp06ERQUxKRJk1iy ZAnXr19XlxkzZoxeOGssrEtMTMTGxoaQkBAaNmyoLhsREWFVOb777jtsbGzKHNYpisJbb72lzuvV q5fRsG7AgAHEx8ezZcsWwLqwzrBtCiGEEEIIIYQQQgghhBBClMdDC+sSEhLUaQEBASiKwujRo9Vp utFM69atA+Ds2bNqkJKamgqgjtZ68cUXAeMhSnZ2NvHx8bi4uODj40OrVq0shnW//vorjRo1wsvL C1tbWzw8PIiOjmb37t1m9+3EiRMMHTqUmjVr4ujoSHBwMCNGjDBath07dqjl0IVby5YtQ1EUtFqt us7t27cTGxuLj48PTk5O1KpVi+eff16vjkp+kpOTAcjKymLgwIEEBwfj4uLCE088weLFi9X16uqu b9++jBo1Cl9fX6ZOnQpAeHg4iqKQlJRkcl9TU1Px9PQstf2Sxwzg4MGDrF69mu7du5sM67Zs2cKJ EyfU72+88Ya6ruzsbLN1npqaikajoUuXLvj5+ZU5rPPx8SEvL4/jx49TpUoVo2GdYRBnTVhn2DYB 0tLS6NmzJwEBAbi6utKoUSM+/fRTioqKADh8+LC6/WnTptGwYUNcXFxo2rSp2uaFEEIIIYQQQggh hBBCCPF4eWhhXf369UlMTOQf//gHiqLQvHlzcnJy1OUqIqwrLCykWbNmKIqCp6cnAwYMsCqsW7du Ha1atSIxMZEJEybQpEkTFEWhatWqFBYWGv3N6dOn8fDwQFEUQkNDGT58OE899RROTk5Gy2ZNWJeR kYGDgwOKojB8+HCmTZtGnz598PLyAmD69OnqOoYMGcJbb71Famoqp0+fxtPTExsbG8aPH8+8efPw 8fFBURRWrVqlV3clP2UJ61566SUURaF169Z88803dO7cmZycHJYvX86RI0dKLa8bYWcsrDOke6Sl i4sLeXl5JpfLyckhKCiIBg0acOPGDQIDA8sU1rVt2xZFUZg/fz6DBw9GURTatWv3UMK69PR0NBoN iqLQpUsXRo8ejZubG4qiMGnSJEA/rKtduzZ9+vShatWqKIpCixYtLNabEEIIIYQQQgghhBBCCCH+ fh76O+t0H3d3d2bPnq0uVxFhXclHXu7bt6/UNHOPwczNzeVf//oXS5Ys4fXXX1d/k5mZaXT5CRMm oCgK/v7+3L59W52+d+9eo2WzJqzbsGGDuszEiRNZv3492dnZ6nvWTD0GU1eWTp06kZubS25uLq+9 9hqKotC9e3e9uuvRowcnT57k8uXLarnXrl1LcnIye/bsMVk/ixYtQlEUqlSpQkhICMHBwcyfP5+M jAyjy1sb1qWnp6sj9nThoTH5+fm0aNECLy8vdVReWcO6lStX4uDgQEBAAA4ODnTo0EEtZ0WHdePG jUNRFOrWrUtxcTEAc+bMQVEUNBoN9+7d0wvrdO/r+/jjj9XgUgghhBBCCCGEEEIIIYQQj5+H/hjM goIC/t//+39qSHHs2DHgv2Hdt99+C5QvrFu8eLEahuhYE9atWrUKV1dXNXzTjawrWT5Dffr0QVEU unXrZnS+ubBOF74ZhnV37tyhW7dueqGmjY0Nffv2paioyGRYpyuLsU94eLjRuiur4uJi5s+fT2Rk JHZ2dnrlMxayWRPW7dmzB39/f3WkoO7xkMbMnTtX3Z/4+Hji4+NxdnZGURSaNGnC22+/bfR3JcO6 lJQUdUSdoih8//33Dy2s6927N4qi8I9//EP9zZYtW9RtX7x40WhYt3btWhRFwdbW1mRdCCGEEEII IYQQQgghhBDi7+sveWfdN998Uyp00gUvuveslSes27hxozr6Szd6zZqwLigoSO/xhCW3bSqsS0pK QlEUgoKCyM/PV6frRvQZlm3Pnj3qOnWj0QzDurNnz1JQUEBmZibLly9nyJAh6m/+85//cOfOHfX7 Tz/9pG5TN4orLCyMHTt26H1++eUXo3VXkjUj6woKCtT/Xrp0Ke3bt2f48OF65S/JXFhXXFzM3Llz cXBwwN7enjlz5pRaZufOnSQnJ7N+/XoA3nnnHZOBpKIoxMTEGC23YVh3+PBhgoODadOmDcXFxQ99 ZF1oaKg6su6jjz6yOLJu3bp1EtYJIYQQQgghhBBCCCGEEI+xhxbW1axZk/j4eLp3766OYqtfv74a dEVFRakj24YMGcITTzxR5rDu9u3b6kitVq1aMWXKFHW95sK6Ro0aoSgKLVu2ZNasWXTt2tViWJeV lYVWq1X3Y/jw4XTp0kV9fKFh2a5du4ajoyOKotC4cWNeeOEF/Pz89MKu5ORkfH19GTZsGDNnzuTF F19EURTc3Ny4fPkygLp/zZs3Z8qUKezfv5/MzEy1LM2bN2fkyJG8+OKLtG7dWh35Zy6ss+addVOn TiUsLIzRo0czYMAAGjRoQOvWrVEUhc6dO6vLrVmzhsTERLVOfXx8SExMZO7cueoy/fv3V+u3Ro0a xMTEqB/dciNGjEBRzL+7rayPwSw5GlHnYYV1x48fx8XFBUVReOqpp/i///s/td2//vrrABLWCSGE EEIIIYQQQgghhBCilIf+zroqVarg4+PD0KFD1YACYP/+/TRp0gRnZ2caNGigvnOtLGEd3B/Z1rx5 c1xcXIiIiNB77KGpsG7fvn00bdoUBwcH6tWrx9tvv20xrAPIzMxk0KBB1KhRA0dHRwIDAxkyZIjJ si1btowaNWrg6upKmzZt1LLpwrrffvuNmJgY9Z1qvr6+PPvssxw4cEBdx/fff0+9evWwt7fHzc2N NWvWAHDixAmGDh1KSEgITk5OaLVamjVrRnJystG6K8masG7dunU0a9YMb29vbG1tsbGxwd/fn6FD h3LlyhV1OV34Zfjp0KFDqe0Z+4wYMQL43w/r4H4Y98wzz+Dv749Go6FRo0YsXrxYfdynhHVCCCGE EEIIIYQQQgghhDBU4WGd+PtJTk4mNja2soshhBBCCCGEEEIIIYQQQgjxtyNhnbBIwjohhBBCCCGE EEIIIYQQQoiHQ8I6YdEPP/zA+PHjK7sYQgghhBBCCCGEEEIIIYQQfzsS1gkhhBBCCCGEEEIIIYQQ QghRSSSsE0IIIYQQQgghhBBCCCGEEKKSSFgnhBBCCCGEEEIIIYQQQgghRCWRsM5AeHg4S5Ysqexi mHX9+nUUReHUqVPlXkebNm1YsGBBxRVKqO7du4eiKBw+fLiyi/LQSTsqbfz48Xh5eaHRaNi7d29l F0dUks2bN+Pl5WX18pcvX37gft0aj1P/9DhZvXo1wcHBD307//rXv8rUrsWjo1GjRo/89e3/kv+F 6x/p7/9669at+0v6YiGEEEIIIcTf02MV1imKYvZz7949i2HdwIED6d69e7m2/yC/LUnCukfbg94c yczMRFEUfvvttwouWcUr2Y6Sk5PRaDTqvMjISJKTk/WWr6hzQCcwMJDZs2dX2PoMGe6TJT/++CMB AQGcPHmS69ev8+eff1ZoeXJzc1EUhczMzApdr6GkpCQGDhz4ULfxV6qM/ZGw7vFlrO972H2VhHXl Y+xY/V1VVFhnbZ2V5Vqm5PmxYcMGAgMDH7icD9v/wnV0RfT3D7vv+ruRsE4IIYQQQgjxIB6rsO7y 5cvqp1+/fvTu3VtvGlgeWffHH39w8uTJcm3/QX5bkoR1j7YHvTly584dUlNTycvLq+CSVbyS7ejq 1ascOnRInWfshl5FnQM6aWlpXLp0qcLWZ8hwnyyZMWMGffr0eWjlkbCufCSs+y8J6x4+Y33fw+6r JKwrHwnrys7aOivLtUzJ80PCuopTEf39w+67/m4krBNCCCGEEEI8iMcqrCspISHB6M3b8PBwXn/9 dZ5++mmcnZ0JCQnhxx9/VOePGTOGhIQEAIqKipg8eTI1atTAxcWF+vXrm/2He8nf6m7MfvzxxzRu 3BgnJydat25NVlaWuvy1a9cYNmwYgYGBuLu70759e3bv3l0qrEtISGDMmDF62woMDGTDhg3q97Vr 1xIeHo6zszNNmzbF399fr6wbN26kWbNmeHp6Uq9ePb7++mt13r59+4iOjsbd3R1vb2+6dOnC+fPn je6jbr9mzZpFgwYNcHFxISYmhj/++ENdZu/evbRr1w43NzdCQkJ4//33KSoqAmD06NF6YcfYsWNp 166d+n3mzJl07dpVrf/333+f0NBQPD09ad26Nfv27VOXDQ8P54033qBnz55otVpGjx5ttMwrV66k Vq1aODk54eHhQWxsrF4YEh4ezoQJE+jevbvRNlFYWMj06dMJCgrC1dWVTp06Wbw5kpSUhJ+fHw4O Dvj6+vLiiy+qN7QMj29iYiJxcXGMGTOGgIAAGjZsaHK9cP9GV7NmzdBoNNSsWZNx48YBUFBQwGuv vUZwcDBarZbY2FjS09PV3yUmJtKjRw9GjhyJh4cHPj4+zJo1S2/d5tpRyRsUiYmJVKlSBUdHRzQa jVrmkucAmG8L1pwjJW8+rl69murVqzNnzhz1WPTv35+CggJ1+UOHDhEdHY2LiwsBAQHUq1ePuLg4 k3VpeNPFXFvYsGED9vb22NraotFoaNeunboPn332GW3atMHR0ZE1a9aYPf4AK1asICIiAhcXF6pX r86LL74IQEREBIqi4OLigkbH2SfDAAAgAElEQVSjITEx0eQ2rOkXjLWVVatWYW9vj52dHRqNBo1G w/nz51myZAmNGjXSW9/AgQNJSkrSO16G5bB0nlrDmrZpqg8ztj9HjhzBxsaGtLQ04H4oa2dnx9at W4H7Nzg1Gg179uwBIDs7m/j4eLy9vfH392f48OHcvHlTr10Y9jWGYd3+/fvx8vIyebNcV3+LFy8m MjLSaHs3125M1b+l/ikiIoKPP/5Y3UaTJk2YMmWK+r1z5868++675d5+RRz/wsJC3nvvPUJDQ3Fx caFhw4Z8+eWXVh+bV199lU6dOuHo6Ej9+vXZvXs3M2fOJCgoCDc3NxISEigsLATu9yMBAQFMmzYN f39/PD09GTp0KPn5+QCcOnUKRVG4fv26uo3k5GQiIyMB031fyb7Kmr6trH3V6tWrCQoKYsGCBQQH Bxvt/9q2bUvVqlVxcHCgdu3aeqNlVq9eTY0aNfj444+pX78+9vb2XLx4kStXrvDcc8/h6emJt7c3 7dq1U9v1lStXynQelWf7169fZ8SIEQQFBeHj40OfPn24ePGi5UZTgqlrGFPHqjznu6XriJL16OHh QdOmTfX6h4o4TyytwzCsM3fdZ+qcM1Vnxq5TDK9lzJ3HurKdP38eJycnbGxs1P561apVxMfH89xz z+ntb3JyMqGhoRQXF1usm+PHjxMWFoabmxsuLi40bdqUTZs2qfMf9PrHGFPtbtGiRQQHB6vXOgAZ GRnY2dnxxx9/cOnSJfr370+1atVwd3cnKiqKlJQUq/bDUn+v289hw4bh5uaGr68vS5Ys4dtvv6Vh w4Y4OTnRrl07vWv8sl5nGUpMTKRLly4MGjQINzc3qlevzocffqi3jLm2aKxtWfr319KlSwkLC0Oj 0dC0aVM2b95s9bG2Zh+PHz9Ot27dqFatGtWrV2fSpEncu3cPkLBOCCGEEEII8WAkrDMQHh5OgwYN WL16NZmZmYwdOxZfX191fsmwYcmSJYSEhJCVlUVBQQG7d+9m0aJFJrdpLKzr1q0bKSkpHD9+nA4d OtC3b191+SeffJJevXqRnZ3NtWvXWLZsGevXry9zWPfrr7/i4uLCihUruHTpEgcPHqRu3brqP2x3 7tyJu7s727Zto7i4mH379qHVajlw4AAAwcHBzJ49m9u3b5Odnc3ChQtNjuzR7Vf//v35z3/+Q1pa Gp07d+bJJ58E4MKFC7i7u7Nw4UJu375NamoqNWvWVG8Wr1+/Hj8/P3V9tWrVws3NTb1x0L17dz74 4APgfnD3xBNPkJWVRVFREcnJyQQEBHD79m31WAYHB7Ny5UoyMjI4ffq00TJnZGRw5MgRcnNzuXHj BpMnT6Zjx47qfEttYubMmdSuXZudO3dy+fJltm7dajGs27t3LydPniQvL4/s7Gw6d+7M9OnTAeNh nUajYdasWRw7doyjR4+aXO8vv/yCq6srGzZsID8/n8OHD6th3YQJE2jatCmZmZnk5uYyefJkgoOD 1ZvtiYmJeHp6Mm/ePI4fP86KFSuwsbFRt2epHRneoDD21/clzwFLbcGac8TwJpKtrS2vvPIKqamp 7Nq1C19fXxYuXKjWq6+vL6+//joXLlwgKyuLnj17ljmsM9cWJk+ezDPPPKN+1+1D+/btSUlJIT09 ncuXL5s9/llZWdjZ2bF9+3bu3r1LRkaGOs/YyDpT27DUL5hrK8ZGolkb1hmWw9J5ag1LbdNSH2Zs f5o0acInn3wCwBdffIGbmxsjRowA4LfffsPDw4PCwkKKi4tp2bIlCQkJXLt2jZycHGJjY/X+qMBY X1MyrDt48CA+Pj56NyANWdPezbUbc/Vvrn8aO3Ys/fr1A+DkyZO4ublRv3594P7Nf3d3d/bv3/9A 23/Q4z99+nQaNGjA77//Tl5eHlu3buWDDz6w+tiEh4ezbt06Tp06xYABA7Czs+Oll14iLS2NXbt2 4eHhwZo1a4D7/YiDgwNTp07l0KFD7Nixg+DgYN58803AclgHxvs+Y2GdqWNdnr7KUv8HsG3bNnJy csjPzyctLY2AgAC2b9+u/t7GxoahQ4dy4MABDh8+zN27d4mNjaVLly6kp6dz4cIFZsyYoRcyWXse lXf7nTt3pl+/fty8eZOCggIGDx7Ms88+a7HNlGTuGsbwWJX3fLd0HaGrxxMnTnDx4kXeeustvXqs iPPE0jpKtkFLfaapc85YnYHx6xTDaxlz6yxZNmMj61JSUnBycuLatWvqtMjISObMmWNV3Vy9epVd u3Zx9epV8vLy2LBhAy4uLmoI/6DXP8aYane3bt3C1dVVL2QbN24cTz/9NHD/mr5Pnz5cvnyZmzdv sn79ejZu3GjVfljq7xMTE6latSofffQRmZmZzJ07F1tbWzp27MjOnTvJzMwkKiqKUaNGqWUry3WW MYmJifj5+fH555+TkZHBypUrsbe3V899S23RWNsy9++vTZs24eHhQUpKCvn5+axbtw4nJyf1KQmW jrWlfbx27Rq+vr7MmTOHu3fvkpOTQ5MmTZg7dy4gYZ0QQgghhBDiwUhYZ8DwMZgZGRkoiqI+AqZk 2LBw4UL8/f1JSUnhzp07FrdpLKwr+cizxYsXExYWBtx/7IyiKFy5cqXUesoa1vXq1Yvhw4frzS/5 +J74+HgmTJigN//5559n2rRpAFSrVo0xY8Zw7tw5i/tobL/279+PoijcunWL+fPn07RpU73ffPTR R2oIcPPmTezs7MjMzGTv3r20bduW5557jvnz51NcXIyXlxcHDx4EwNfXV+9mB0BQUBC//PILYPmR pjrXrl1j4sSJREVFUaNGDTw9PfVuollqE15eXqxYsUKdb81jh44ePcrgwYOJiIggMDAQjUaj3og1 FtaVHI0G8NNPP+Ho6Kh+dDcS+/Tpo3eTpaSqVavy/fffq9+Liorw9fVl3bp1JrcTEBDAP//5T8By OyprWGepLVg6R6D0TSTDGyQDBgxg5MiR6vYM/wp/8uTJZQ7rzLUFU2Gd4aMNzR3/tLQ0bGxs+Oqr r7hx44be78yFdYbbsNQvmGsrDxLWGZbD0nlqDUtt01IfZmx/xo8fr07r1q0bn3zyCdWqVaOwsJB5 8+apgcChQ4ewsbHROxZHjhzRC2yM9TW6sO7QoUP4+fmxatUqs/toTXs3125M1b+l/mnjxo3qjfH3 3nuPyZMnExQUxKFDh/j999/x8vJSR4CUZ/sVcfx9fHzUMK2k8hybjRs3UrVqVb31dO3aVQ0djfUj H3zwgdpXVWRYZ+pYl6evstT/wf2b2M8++yyhoaH4+/tjb2+v9t/Gfn/o0CEURSE7O1udZvgYTGvP o/Js/9ixY9jZ2emNasvKysLe3l4NAK1h7hrG8FiV93w3dx2hq8eSo5UM67EizhNL6yjZBi31mabO OTAd1hn20YbXMubWaSmsA6hfv746Imvv3r04OzvrnYfmFBYW8tFHH9GxY0dq1aqFn59fqRDrQa5/ jDHX7kaMGKFeK+Tn5+Pl5aWO0u/bty/R0dEcOXKk1KhBS/thqb833M/bt2+jKIre477fffddvaC5 LNdZxhir2x49eqh/HGSpLRr7vbl/f/Xq1Utdt07v3r3V6yFLx9rSPi5atIioqCi9+Z9//jnR0dGA hHVCCCGEEEKIByNhnQHDmzA5OTkoisLZs2cB/bChoKCA8ePHExQUhL29PVFRUWzbts3kNi2FdStX rqROnTrA/ZsVWq3W6HrKGtY1b96c999/X29+yZsMUVFReHl5ERwcrH58fX3Vde7YsYPo6GicnJyo Vq0aiYmJ6l/xGjK2XxcuXEBRFDIyMhg/fnypv4rfsGEDnp6e6vdWrVrxxRdfMHHiRObNm8eGDRto 27Ytx44dw8fHh+LiYvLy8lAUhcDAQL1ye3l5sXr1asD6sK5ly5Z07tyZAwcOkJ+fT0pKil7dm2sT uhsdJR81ZSmsu3DhAlqtlnHjxnHy5Enu3bvH1KlT1Rs31oR1t2/fJjMzU/3k5OQA92+iGT5eSLe8 oihq0KkTGRnJvHnzTG6nXr16LFu2DLDcjsoa1llqC5bOEbB8E2nEiBHqIyTHjx/PP/7xD735DxrW GfYP1oR1lo4/3L/5HxERgZ2dnd5f71dkWGeqrUDFhXXWnKfWsNQ2LfVhxvZny5Yt1KhRgxs3bhAY GEhhYSGRkZH8/PPPxMfH89FHHwH3wx0PDw+93+qOw++//w6YDuucnZ3x9fUlLCyMP//80+w+Wmrv ltqNsd9b0z/9+eef2Nvbc/LkSVq0aMHvv/9OUlISb7zxBosWLaJ3797l3n5FHH9dXaemppaaV55j Y9i/A8TFxTF58mTAeD+yatUqAgICgIcX1pU81uXpqyz1f5s3b0aj0bB48WIuXLhAcXExHTp0UPsA Y7/fuHEjrq6uetMMQyZrz6PybH/Tpk3Y2trqtR3dY5x1/8+zhrlrGMNjVd7z3dx1hKV6rIjzxJp1 lGyD5vpMc+ecsToDy2GdpXVaE9Z9+OGHaqA9ZMgQhgwZYlXdAEyaNIk6deqwefNmNfwtWZ4Hvf4x xly7S01Nxc7OjvPnz7N06VJCQkLUYO7s2bPEx8fj6emJq6srPXr0UJ8MYW4/rOnvje2n4XFZsGAB bdq0Ub+X5TrLGGPbfOmllxgwYABg+f/fxn5v7t9fzZs3V0e56SQlJdGzZ0+T6yt5rC3t44QJE9Bo NHrlDQwMVP8fIGGdEEIIIYQQ4kFIWGegLGFdSZcuXWLUqFHqDT1jyhLW7dmzB0VRuHz5cqn1GIY5 w4YNY9iwYXrLlLwp//TTT5f6K9OSNxl69+6t944iUwoLC9m1axdeXl4sXrzY6DLG9mvHjh3Y2dmR m5vL/Pnzady4sd5vFixYoBcCTJkyhRdeeIHQ0FDOnz/PnTt3qFq1Km+++Sbx8fHqct7e3uq7cYyx Jqy7efOm3k04KH0z11KbcHd31xuxZimsW79+vV44CZQ5rDOla9euZkfWfffdd+r3wsJCqlWrZnZk XckbGJbakeENiqioKD799FO95Q1H1plrCxUd1n3wwQc0b95cb35lhHWWjn9Jt2/f5quvvlLDbt0N 2ZLvGjQV1lnqF8y1lQkTJtC/f3+9acuXL6du3bp606wZWWfpPLWGpbZpqQ8ztj95eXk4OjoyY8YM dcTEe++9x4gRI6hevTrHjh0D/jvSpmQ4c/jwYatG1jk6OrJ7927at2/PU089Zfa9Ppbau6V2Y6r+ remf2rVrx9tvv60+/nLv3r3Uq1eP5557Tn20WHm3/6DHv6ioCFdXV7Mj68pybMoT1r311lu0aNEC gPPnz5caJWUY1hnr+8oS1pWnr7LU/40dO1a9Wa1jKSw7cOAANjY2eiPbDMM6a8+j8mz/yJEjODg4 mPzjoLIydg1jeKzK06YsXUfs378fGxsbvcDesB4rop+0tI6SbdBcn2nunAPj7dtSWGdpnSXLtmnT Jvz9/Ustc+3aNZydndVHP5blnX5NmjRR/zBJpyxhnaXrH3NMXTu3aNGCN998k9atW5cKAnUyMzNp 27atGmxZ2g9L/f2jEtbFxMQwceJEwPL/vy1dAxv++6tXr1688soresvo3nlnan1lCes++ugjvXdp G5KwTgghhBBCCPEgJKwzUJaw7tNPP2XFihVcvnyZgoICpk+fTkREhMltliWsKyoqonXr1vTq1Ytz 585x8+ZNVqxYYfSddfPnzycwMJCDBw9y8OBBXnnlFWxtbdWb8l988YX6iJ1jx47xwQcf4Obmpt5k +Pnnn9FqtXz77bfcunWLixcvsmnTJrZs2cLt27cZMWKE+v6YrKwsqlevztq1a43uo26/VqxYwfXr 1zl8+DDNmzdn9OjRan26u7uzYMECbt++zcGDB/XeUwbw73//G1dXV9q2batOGzx4MK6urnp/zT1l yhQiIiLYvXs3eXl5nDp1ii+//FIddWRNWFdcXIyvry+TJ08mJyeH7du306JFizKFdYMGDaJZs2ak pqayf/9+Ro0aZTasS0tLw9bWlvXr13PhwgVWrlxJQEBAhYR1mzdvxtXVle+//57bt2+Tlpam3hCZ MGECjRs3JiMjw+Q768zdwLDUjgxvUPTt25c+ffrw559/cubMGUD/HLDUFio6rDt+/Dh2dnYsXbqU c+fOsXHjRsLDw//ysM7S8d+xYwezZs3i9OnTFBYW8vPPP2Nvb8+FCxeA+4/W+vDDD9X34JgKSSz1 C+baysKFC6lTpw4XL14kOzubO3fu8Pvvv2NjY8P69evJyMhg3rx5eHp6WgzrLJ2n1rDUNs31Yab2 B6Bjx464urry888/A3D69Gnc3Nz0RnUUFxfTokULnn/+ea5evWryHVamHoMJ92/mN2nShJ49e5p8 fJ+l9m6p3Ziqf2v6p+nTp+Pq6sobb7yhTqtVqxaurq7qcSrv9ivi+E+aNIkGDRqQmppKXl4ev/zy C3Pnzi3XsbEmrPPy8mL//v3cuHGDn376CW9vb/X/ecXFxXh7e/P6669z+vRp1qxZQ/369fXCOmN9 X1nCuvL0VZb6v4ULF1K9enUOHjzI2bNnmTFjBk5OTmbDsnv37lGnTh2GDBlCeno627ZtIyYmRi9k AuvOo/JsXzf6rm/fvpw4cYK8vDzS0tJ47733TNaDIUvXMIbHqjxtytJ1xN27d6lVqxYvv/wyZ86c Ye/evTzzzDN69VgR54mldZRsg5b6TFPnnLE6A+seg2lunSXLdvToUapUqcJvv/3GzZs3uXr1qrrO hIQEqlatWuoxhJb07duX2NhYTp8+zdGjRxk0aFCZwjpL1z+GrLl2XrJkCVWrVsXZ2VlvHydOnEhK Sgp//vkn169fp3v37uo1tKX9sNTfV1ZY16FDB7Kysrhy5QoLFy7E1dWVP/74A7DcFo2V2dy/vzZt 2oRWq2Xbtm1676zThekPGtZdvHgRb29vZsyYwcWLF7l16xa7d+9W68jwuvH8+fPExMSo+yOEEEII IYQQ5khYZ6AsYd2mTZvUGzJarZZOnTqRlpZmcptlCet02x40aBB+fn64ubnRoUMH9uzZU+oGSH5+ PvHx8bi5uVG3bl3mzJmDn5+felO+sLCQSZMmUa1aNfz8/Bg9ejSNGjXSu8mwYcMGWrVqhVarxcPD g+joaHbs2MHdu3dJSEigRo0aODo6UrNmTWbOnGlyH3X71bFjR9zd3fH19WXs2LF6fxm/Z88e2rZt i5ubG3Xq1GH27NnqO5Hg/o0tjUaj99fDP/74I4qicPLkSXXavXv3mDNnDmFhYTg7O+Pv70/v3r3V 9+tY+xjMlJQUQkNDcXZ2plWrVrz++utlCuuuXLlCXFwc7u7uav1bemfdvHnz8PHxwd3dnZ49ezJw 4MAKCevgfjtq3LgxLi4uBAcHq2FKQUEBkyZNokaNGmi1WmJjY/VGaFm6gWGpHRneoDh8+DANGzbE wcFB/Stkw5Gp5tpCRYd1cH90WJ06dXB0dKRTp0707t271Iirkh5GWAfmj39mZiZdu3bFx8cHZ2dn GjduzPr169XffvPNNwQGBuLg4MBrr71mchuW+gVdfRprK7m5uXTt2hVnZ2d8fHy4ePEiADNmzMDb 2xs/Pz8SExPp1q2bxbDO0nl67tw5FEUpNVqgJEttE0z3YZb2x8fHRy9Aa9myJYMGDdLbVnZ2Nn37 9lX3fdiwYXqjjSyFdXD/r/9DQ0MZNGhQqfcQmao/w/Zurt2Yqn9r+qdff/211MggXV9RUnm2XxHH /86dO0ybNo3atWvj7OxMREQEX331FVD2Y2NNWOfu7k6rVq1wdnYmJCSk1CP/Nm7cSO3atdFqtfTo 0YOkpCS9sM5Y31eWsA7K3ldZ6v/u3r3LCy+8gKurK35+fowZM4amTZuaDcsADh48SFRUFBqNhqio KCZNmlQqrLPmPCrv9q9cuUJiYiI1a9bEycmJ2rVr8/LLL6vzv/76a6OPeC65XXPXMMaOVXnOd0vX EQcOHKB58+Y4OjoSHh7O2LFj9UaPVcR5YmkdJdsgmO8zzZ1zxurMmrDO3DoNyzZ+/Hi0Wi2urq56 /8/avXs3iqLw5Zdf6m0rJCSk1MjNks6cOUOHDh1wcnIiNDSUefPmlSmss+Y6uiRrrp3z8vLw9PTk hRde0Js+e/Zs6tevj7OzM9WqVeOFF17g1q1bVu2Hpf6+ssK6unXrqudH8+bN+fXXX/WWMdcWjZXZ 0r+/li5dSlhYGBqNhiZNmui9y/FBwzq4P+r3mWeewdfXFxcXFxo1aqT+f8LwujEzMxNFUaz694gQ QgghhBBCPLZhnXg4TN2wFeJRNGzYMCZNmlTZxXisffHFF3h4eJCbm1vZRRGV4FE7/qZCo8omfZVx gwYN4qmnnqrsYpTZ8uXLadmypdXLP2rnSWX56aef8PLy0vsDMN17JHfu3FmJJSu769evo9Fo2Lt3 b2UX5aEq6x+cCSGEEEIIIcTjTMI6UaEkrBOPslWrVnHkyBGuXbumPirpt99+q+xiPdb69eunPn5T PH4eteP/qIR10ldZx9/fn82bN1d2MSz6+eef2b17N1evXuXgwYM0bNjQ5HvKjHnUzpPK0q1bN159 9VW9aZ988on6Tsn/Je+99x7NmjWr7GI8dBLWCSGEEEIIIYT1JKwTFUrCOvEo69evHx4eHjg5ORER EcHKlSsru0iPteLiYgICAjh37lxlF0VUgkfx+D8qYZ30VZYdOnSI8PDwyi6GVebMmYOvry8ODg7U qlWLKVOmcPfuXat++yieJ5UhPT0dW1tbsrKy9Kb36tWLf/7zn5VUqvIpLCwkODiYL774orKL8tBJ WCeEEEIIIYQQ1pOwTgghhBBCCCGEEEIIIYQQQohKImGdEEIIIYQQQgghhBBCCCGEEJVEwjohhBBC CCGEEEIIIYQQQgghKomEdUIIIYQQQgghhBBCCCGEEEJUkgoP67y8vFAUhcmTJ+tNd3R0RFEU3nrr rYrepCopKQlFUdRPlSpVcHd3p0uXLhw6dEhv2ZycHEaNGkXt2rVxcHDA3d2ddu3asXz5cqPlLvkZ M2YMABs2bFCnBQYGcv36dfV3Wq0WRVHYsGGDOu3OnTu8++67NG7cGGdnZ5ycnKhbty4jR47k/Pnz 5drn5ORkYmNjjc67dOkSe/bsIS4uDkVRiIyMLLXMd999R3R0NNWrV8fR0ZHq1auTkJDA2bNn1WWW LVtWqg50nyVLlpgt3+eff84TTzyBo6Mjrq6uPPnkk+zatUtvmZ07dxIdHY2rqyuOjo40bNiQr776 Sm+Zs2fP0q9fP7y9vbG3tyc4OJjXXnuNu3fvWllTQgghhBBCCCGEEEIIIYQQj56/ZVjn4uJCXFwc Xbp0wdbWFkVRaNy4sbrcqVOn8Pf3R1EUHB0dadu2LXXr1lUDqNGjR6vLvvTSS7Rq1UqdN2TIEFat WgXoh3WKovDCCy+ovzMM6+7cuUN0dLS6bPXq1WnVqpW63OrVq8u0rzdu3GDx4sV06tSJoKAgJk2a xJIlS/QCwzFjxuiVz1hYl5iYiI2NDSEhITRs2FBdNiIiQl1GF9bZ2dkRExOj99myZYvJMpYM+dq0 aaPWsbOzM1lZWQBkZGTg7OyMoiiEhobSunVr9TcrV64E4O7duzRo0ABFUfD29qZz587Y29ujKAoj RowoU70JIYQQQgghhBBCCCGEEEI8SiotrMvPz2fy5MnUrVsXJycnvLy8iIqK4l//+hcARUVFfP75 50RGRuLu7o6fnx+9e/fm9OnTJretC+uCg4PVaQMGDCgVPvXs2RNFUfDw8ODo0aMAFBcXM3bsWDUo +s9//qMuv2DBAnX6vXv31Om6sM7Gxkadv3HjRqB0WFdyHdOnT6eoqAiAvLw8pk2bxubNmwEIDw9H URSSkpJM7mdqaiqenp5GR7qtW7dOXe7gwYOsXr2a7t27mwzrtmzZwokTJ9Tvb7zxhrqu7Oxs4L+h m1arNVkmY5o3b46iKHTq1AmA3NxctV5ef/11AMaPH4+iKHh6evLnn38C8OSTT6IoCq1btwZg48aN apl+/fVXAN58800URcHBwYHc3NwylUsIIYQQQgghhBBCCCGEEOJRUWlh3eDBg1EUhbCwMKZOncrL L79MWFgYs2fPBlCDs4iICD755BPi4+PV7yUDs5J0YZ2bmxuJiYkMGjQIZ2dn/P392bFjBwD37t1T yzJs2DC931+/fl0NhSZNmqROtxTWabVaEhIS9B6HaRjWPfXUU2qQWFxcbLL+rAnrXnrpJTXM+uab b+jcuTM5OTksX76cI0eOlFpeN8LOWFhnaNasWeroxLy8PKD0YzDd3NyIiopi2bJlZtdlbDSlLojr 2rUrALGxsSiKQkxMjLqMLohzdnYG4J133lFH9unqbvv27Wp59uzZY3G/hBBCCCGEEEIIIYQQQggh HkWVFtZFRkaqj6dMTk5m9+7d3L17l+vXr3Pz5k31MYcpKSnk5uZy9epVddpvv/1mdNuG76zTfezs 7Hjuuee4c+cOV65cUafPnDmz1DqqVq2KoigMHjxYnWZNWHft2jV8fX3Vx2EahnUREREoimLy/XI6 a9euJTk52WwAtWjRIvWdfCEhIQQHBzN//nwyMjKMLm9tWJeenq6O2Js6dao6fc2aNURFRdG3b196 9+6Nn5+fWh/fffed0XUVFhaqy8ydO1ed/swzz6AoCu3atQOgbdu2KIrCs88+qy7z4Ycfqr8tLCxU R/t5eHioy6SmpqrLbN261ex+CSGEEEIIIYQQQgghhBBCPKoqPKzz8fFBURQmTpyoTisuLsbOzg5F UZgxYwYAP/zwgxpo6T7VqlUjJSWFtLQ0o6Gb7mPq/W6Gj8EsLCzkp59+Un/3ySef6I2se+mll/R+ f+vWLfWRlmUdWQf3Qy3dcrr16MK6jh07oigKDRo0eOA6Li4uZv78+URGRqr1qttmyZBNx5qwbs+e Pep7/IYMGaI+ptOY3AelVXkAACAASURBVNxcNZQ1HJ1Yki74fPPNN9Vpunro06cPAL169UJRFJ58 8kl1menTp6MoCj4+PgDMnz9fDV115fr3v/+t7ndaWprJMgghhBBCCCGEEEIIIYQQQjzKKjysa9y4 MYqi0L59ezVY2bVrlxqsLF26FIDMzEzy8/P5+eefmTNnDrVq1UJRFDp37sz169extbVFURRmz57N jh071M+2bds4d+6c0W0be2fdxYsX1W3rgixdQOTq6qr3zrpx48apy5blnXUl3+WmW7fuowvrZs+e rU5755131Mc5FhQU8O677/Ljjz8C1o2sKygoUP976dKltG/fnuHDh5t8r5y5sK64uJi5c+fi4OCA vb09c+bMKbXM6tWrOXXqlPr95MmTaDQavVDzypUrDBw4kIEDB6qP4mzRogWKotCxY0cAbt68ibu7 u9476yZOnIiiKLi7u3Pr1i0AoqOj9d5Zt3nzZrXufvnlFwCmTZumvrNO9647IYQQQgghhBBCCCGE EEKI/zUVHtZ99tlnarBSu3Zt2rdvj7OzM4qiEBQUxM2bNwEICgqiY8eOTJ48mbfffps6deqgKAqv vfYaAImJiWqI079/f0aPHk1cXBzVqlVj165dRretC+tcXFyIj4+nV69eBAYGoigKGo1GHYF16tQp dRSZk5MT7dq1IzQ0VC336NGj1XWOGjVKfVSjoigMHz6cf/7zn4DxsC4nJ0d9lGTJsC4vL4+oqCh1 enBwMG3atFFHn+lGC1rzzrqpU6cSFhbG6NGjGTBgAA0aNKB169Zq2KmzZs0aEhMTadSokTpSLTEx Ue+xlP3791fLVKNGDWJiYtSPbrnu3btjY2NDcHAwDRs2VB9H6u7uzokTJwBYtWoViqIQGhqqhrRL ly5V1x0VFUXt2rVRlPvvosvMzAQgIyMDJycnFEWhTp06enX09ddfA3D37l3q16+Poih4enoSExOj jig0N7JPCCGEEEIIIYQQQgghhBDiUVfhYR3A119/TatWrdBoNDg6OhISEsLIkSP1RsSNHz+esLAw 3Nzc0Gg0hIWFMXPmTAoLCwEoKiriyy+/pFWrVvj4+ODg4ED16tXp168f58+fN7pdY++sc3Nzo2vX ruzevVtv2ZycHBITE6lZsyb29va4ubnRpk0bli1bprec7pGZJT9jxowBjId1AF9++WWpsA7uB3Zv vvkmTzzxBE5OTtjZ2REaGsq4cePIyckBrAvr1q1bR7NmzfD29sbW1hYbGxv8/f0ZOnQoV65cUZfT jagz/HTo0EFdRrc9Y58RI0YA8Mknn9C0aVNcXV2xt7cnODiYPn36qKMSAV588UUUReGrr77SK+vn n39OeHg4jo6OaDQa2rdvz86dO/WW2blzJx06dECj0eDg4EB4eDifffaZ3jJnz54lPj4eLy8v7Ozs CAoK4tVXX+XOnTsm60kIIYQQQgghhBBCCCGEEOJR91DCOvHXSU5OJjY2trKLQY0aNahTp44atgoh hBBCCCGEEEIIIYQQQgjLJKz7H/cohHXp6ekoisLnn39eqeUQQgghhBBCCCGEEEIIIYT4XyNh3f+4 H374gfHjx1d2MYQQQgghhBBCCCGEEEIIIUQ5SFgnhBBCCCGEEEIIIYQQQgghRCWRsE4IIYQQQggh hBBCCCGEEEKISiJhnRBCCCGEEEIIIYQQQgghhBCVRMK6SnTv3j0UReHw4cOVWo7Lly+jKAqnTp2q 1HL8HYSHh7NkyZLKLkYpj2q5HpQ151BF7/ujct4aOnjwIJGRkTg6OtKrVy+rf/cotI0xY8aQkJBQ qWWobI0aNar04yCEEEIIIYQQQgghhKgcj11YFxMTg6IoKIpClSpV8Pb2Ji4ujvPnz//lZamMm/4b NmwgMDBQb5qEdWWXm5uLoihkZmbqTX8Ugg9jHna5jLWrv8LfIaxLSkpi4MCBD7yeli1bMnXqVPLy 8sjJySk1/69us1988QVRUVG4uLjg7OzM6dOnTS77qId1kZGRJCcnP9RtVHRY91eU+e/AWN+VnJyM RqOppBI9mHfeeadC+uLK6tOFEEIIIYQQQgghHlePZVj36quvkp+fz61btzh8+DDBwcFMmTLlLy+L hHX/uySs0ydhXflVRFhXXFyMg4MDaWlpJpf5K9vsq6++Sv369fn+++/Jycnh1KlT5Ofnm1xewjoJ 6yqLsb7r6tWrHDp0qJJK9GAuXrxoth+wloR1QgghhBBCCCGEEH+txzKsmzhxovr97Nmz1KpVi+++ +06dlpSUhJ+fHw4ODvj6+vLiiy+Sl5cHQFFREZMnT6ZGjRq4uLhQv359FixYoP5248aNNGvWDE9P T+rVq8fXX3+tzissLGT69OkEBQXh6upKp06dLN70z87OJj4+Hm9vb/z9/Rk+fDg3b94E/huyffzx xzRu3BgnJydat25NVlaW0XWdP38eJycnbGxs0Gg0aDQaVq1apa5n8eLFREZGGl3P9evXGTFiBEFB Qfj4+NCnTx8uXrxostwrV66kVq1aODk54eHhQWxsrBoSLFq0iJo1a1JcXKwuf+LECezs7Pjjjz8s 1mNiYiJxcXGMGTOGgIAAGjZsyPHjxwkLC8PNzQ0XFxeaNm3Kpk2b9Mq0du1awsPDcXJyol69evj6 +lp97AxFRESgKAouLi5oNBoSExOB+8HH66+/ztNPP42zszMhISH8+OOPZssOsHfvXtq1a4ebmxsh ISG8//77FBUVAbBkyRIaNWqkt/2BAweSlJSkfj906BDR0dG4uLgQEBBAvXr1iIuLU+dbU64uXbow aNAg3NzcqF69Oh9++KE6PyEhgTFjxuiVITAwkA0bNphsV8aYaxe6ck6YMIHu3bsbLWd5zqHw8HDG jRtHp06dcHJyIjw8nJSUFHV+cHAw69atU79nZmaiKAq5ublWbbPkfBcXF1q0aEGVKlX0ymSqba1a tQp7e3vs7OzUujM1ytdcG2nVqhWKouDs7IxGo2Hz5s2lfl/eNltUVMT7779PaGgonp6etG7dmn37 9pms76NHj+Ls7Kyey9YwDOvM9cG6/uqzzz6jTZs2ODo6smbNmgc6DgD79u0jOjoad3d3vL296dKl C+fPnycxMZEqVarg6OiIRqNRz9mSCgsLCQwM5PPPP9eb/vzzzzN06FAACgoKeO211wgODkar1RIb G0t6erq6bMmwztI5b6nvN1VmS8fSXD9vqt6NOXr0KF27dsXT0xNfX1/i4uK4fPkyAEuXLiUsLAyN RkPTpk312urq1aupXr067733HgEBAWg0GkaNGsXvv/9ObGwsTk5O1K1bl+3bt6u/CQ8PZ/To0XTs 2FE9v7dt26bOL0/ftW7dOoKDg9XlExMT6dGjByNHjsTDwwMfHx9mzZqld/wttT1Dlspdnv9XNGzY EEdHR722Y+n/3caO1eHDh43Wi6XrHyGEEEIIIYQQQghRfo9lWOfs7IyXlxeenp7Y2NgQHR2tF0zt 3buXkydPkpeXR3Z2Np07d2b69OnA/ZuoISEhZGVlUVBQwO7du1m0aBEAO3fuxN3dnW3btlFcXMy+ ffvQarUcOHAAgJkzZ1K7dm127tzJ5cuX2bp1q9mgobi4mJYtW5KQkMC1a9fIyckhNjaWPn36AP+9 edqtWzdSUlI4fvw4HTp0oG/fvib339zIOnPr6dy5M/369ePmzZsUFBQwePBgnn32WZPbycjI4MiR I+Tm5nLjxg0mT55Mx44dAbh16xaurq5s2bJFXX7SpEk8/fTTVtVjYmIiGo2GWbP+P3vnHhdVtf7/ Qe4MzDDchouAeEGTUEEBL5lYqamZibfS1C5yMLHwEohRP7OOZnlJUekkFWUpFqf8mgmeOkqmpnkD ERBBVJSrCHiJi4h8fn/wnf2dPezZa8+AQvm8Xy9eL509s/ez13rWs561PnutvRrnzp1Dbm4uqqqq cPToUVRVVaGurg579uyBjY0Nt5rnyJEjsLa2xs6dO1FVVYWMjAz06tWLm2hkXVMXsVVKjzzyCFJS UlBQUIBFixZBrVZzx4VsLy8vh0KhQEJCAmpra5GRkYFu3bphy5YtANgT9zU1NVCr1XjrrbdQXl6O wsJCTJo0qZVYx7LL1dUVn3/+OfLz85GcnAxzc3NuUlxswhuQvgpDzC+k2GloG9Kcc9CgQfjpp59Q UFCAZcuWQaVScaI3S6xjXVNz/OjRo6iursbPP//MO87yLSkr61g+olntl5GRofccxvrsqlWr8Oij j6KwsBD37t1DYmIi3N3dUVtbK3id1atXw9vbG+PGjYO9vT2USiWmTZuG0tJSvbbpinViMVgTrx5/ /HGkp6fj/PnzqKysbHM9eHt7Y82aNaitrUVpaSkSEhK4spKySm358uUYMmQI9/+amhpYW1tz54+J iUFgYCAKCgpw+/ZtxMXFwdvbmxMhjRHrxGK2kM2suhSL8/rKXZfr16/D2dkZq1atwq1bt3D16lW8 9957KCwsRGpqKuzt7ZGeno76+nrs2rULVlZW3Cq2lJQUmJqa4s0330RWVhYOHjzICXQpKSkoKirC vHnz8Oijj3LX023fsbGxvPZtTOwSEutUKhU2btyIvLw87NixAyYmJsjNzeXKVcz3hGDZbUxfAbRs 4antO2J1KlZXQuUilv8QBEEQBEEQBEEQBEEQbeOhFOvmz5+Pq1ev4sqVK8jKykJkZCTUajVu3LgB oOVJ85dffhn+/v7w8PCAXC7nhI+EhAS4ubkhPT0dd+7c4Z17+vTpiImJ4X02a9YsvPvuuwAAR0dH 7NixgzvG2k4vKysLJiYmnF0AkJ2dDZlMhpqaGsHtK7du3Yq+ffvqvX+p22Bqn+fcuXMwMzPjJhEB oLCwEObm5mhqahK8TnV1NZYuXYrg4GB4eXlBpVLB0dGROx4REcGJjnfv3oWrqyu3woJVjpGRka22 zGtqasLmzZsxcuRI+Pj4wNXVlVe2YWFhCA8P5/1m2LBhnFjHuqYuUrcUzM/Ph0wmw7Vr1/TaHh8f j8DAQN5nmzdv5iZcWRP38fHx8PX15a1UjIuLayXWGWrXhAkTsHjxYgDtJ9ax/IJlp6FtSOicTU1N UKlU+PHHHwGwxTrWNR0dHbF9+3a9x1m+JUWsY/lIW8U6sTJXq9WtVql6enri119/FbxOREQEBgwY gNOnT6OhoQGFhYUICQnBiBEj9NqmK9aJxWB92/a2tR5cXFwQFRWF4uLiVvZJEeuKi4thZmbGbUG4 efNmhISEcMcdHBw4nwNaVrmp1WrO94wR68Riv5DNYnXJivNSt0vesmUL/P39BY+FhYVxMUXDlClT uNiSkpLCE8kAICgoCPHx8dz///jjD5iamnLxjtW+20us042P7u7u+O677wCwfU8Ilt3G9BUAX6xj 1alYXQmVi1j+QxAEQRAEQRAEQRAEQbSNh1Ks094GE2iZNJXL5fj3v/+N8vJyKJVKLF68GBcvXsTd u3exfPlyTJw4EUDLVmbR0dHw9PSEubk5goODua2rgoOD4ejoCG9vb+5PrVYjKioKtbW1kMlkvC3H WBN6e/fuhb29Pe8zzYT7mTNnBCdPk5OT0aNHD733L1Ws0z5PamoqTE1Nefel2cqtrKxM8DqDBw/G 6NGjcfr0adTX1yM9PR1KpZI7npGRAQsLC1y7dg27du1C9+7duclXsXIEhCcxY2Nj0aNHD6SlpXET k9riRVBQENauXcv7jbZYx7qmLlKFj7KyMshkMly9elWv7dHR0a1WKe7ZswcqlQoAe+I+Ojoazzzz DO84S6yTYte8efMwY8YMAO0n1rH8QsxOY9qQ0DkBoE+fPti6dSsAcbGOdU0pNrF8S4pYx/KR9hTr tMu8rq4OMpkMHh4ePPsdHR2RkpIieJ2IiAhMmjSJ99n//M//QCaToaGhQfA32mIdKwYLxav2qIdD hw4hNDQUVlZWcHFxQWRkJLcyV+r73yZOnIiFCxcCAAYMGIAvv/ySZ19mZibv+wMHDsTGjRsBtF2s 0439ujaz6pIV56WKdUuWLOHqSpegoCBs2LCh1fc1/iIk1o0YMYK3Je/Zs2chk8lw9+5dAOz2fb/E ut69e+Prr7++b3HJmL4C4It1rDoVqyuhchHLfwiCIAiCIAiCIAiCIIi2QWIdgDt37sDc3Bzff/89 du/ezZv4AsCbKNbm2rVrWLBgAdzd3QG0rBB455139F5boVDwVlZIXVlXU1PDfaaZqNS3so4l1qWm psLNzY33Ges82dnZsLCw4CauWdy8eZMTFDXoijIAEBISgrVr12L8+PH48MMPuc9Z5Sg0iRkQEMBN emvQFi8mTJiA6Oho3nFtsY51TV00E9/a75wCjBPF4uPjMWDAAN5nmzZt4iZct2/fjl69evGOa0/c r1u3DkFBQbzj7SHWabeV8PDwVisTtSe8hfxKFyl+wbLT0DYkdM47d+7Azs6O24a1V69evFUxuivr WNe0s7PD3r179R5n+VZMTAxeeOEFvccBto9IEeuM9VknJyfs379f1D5t1q1bB19fX95n3333XasH D7TRFutYMVifaNTWetDQ1NSEo0ePwtHRkRNOgoOD8emnnzJ/m5aWBkdHRxw5cgQODg68mOng4MB7 N2pTUxNcXFwEV9ax2ryU2C9ks1hdsuK8VLHuww8/FF1ZpxEzNWjeywa0j1hXX18PW1tbbqW2MbHL ELEOYPueECy7jekrAL5Yx6pTsbpixXTd/IcgCIIgCIIgCIIgCIJoGw+lWPfmm2+ivr4etbW1OH/+ PGbMmIFu3brh1q1byMnJgampKXbv3o3y8nIkJyfD3d2dmyj+9NNPsWPHDlRWVqKhoQErVqzgJrv+ +9//QqlU4ocffsCtW7dQUVGB1NRUThSYPXs2Bg0ahIyMDJw6dQoLFixgvrMuJCQEs2bNQlVVld53 1hki1uXm5qJLly44ceIEbt68iaqqKuZ5mpubufchXbhwAXV1dcjJycFHH32k1261Wo24uDiUlZXh t99+Q0hISCuxLikpCV5eXrCxseG9+4hVjkKTmNOmTcOYMWNw+fJl5ObmYvbs2Tzx4rPPPoOrqysO HTqEoqIiJCYmwt7enhPrWNcUwsXFBR9//DH3jivAOFGsrKwMCoUCmzZtQm1tLTIzM3nvITpz5gxM TEywe/du5OfnY+PGjVCpVNzEfV5eHszMzLBt2zYUFxdj79698PPzM1isGzFiBAoLC3H9+nUkJCTA 1tYWRUVFAFomiT08PJCZmYnMzEwsXLgQpqam3IS3kF/pIsUvWHYa2oY051y4cCHKy8tRUlLCbdOo 2cI1LCwMo0ePxqVLl3Dw4EGMHTuWJ9axrvniiy9i+PDhOH/+PM6dO4e4uDjecZZvJSQkoEePHqio qEBpaang9nIsH5Ei1gHG+ew777wDf39/HDt2DHV1dbh06RK+/PLLViv0NJSWlkKpVCIuLg43b97E +fPnERAQwPmrENpiHSsG6xON2lIPtbW1iIiIwNmzZ9HY2IjCwkJ07doV33//PYCW+DJ16lT8+eef uHLlit77aG5uho+PD3x8fFpt9xgTE4MBAwYgPz+f+c46VpuXEvuFbBarS1aclyrWlZaWQqVSYdWq VaipqUFJSQlWr16NCxcuIDU1FUqlEgcOHOC9s04j4Bsr1mnad3FxMV555RUEBARw7duY2GWoWMfy PSFYdhvTVwB8sY5Vp2J1JVQuYvkPADz//PN68wKCIAiCIAiCIAiCIAhCnIdSrJPJZNyfUqnEhAkT eKtNNm7cCGdnZygUCkyaNAkzZ87kJopTU1M5gUGpVGLUqFHcO4qAlq2jhgwZAqVSCXt7e4SGhuLQ oUMAgOvXr2Py5MlQKBTo1asX1q9fz5zQKy0txbRp0+Dk5ARXV1eEh4dz2zwaI9YBLVtpKZVK2Nra Ys+ePZLOc/36dURGRqJbt26wsrJC9+7d8cYbb+i9Rnp6Onx9fWFtbY0hQ4bgrbfeaiXW1dXVQaVS CW4BKFaOQpOYV65cwYgRI2BlZQVfX19s3LiRJ140NTUhJiYGLi4usLOzQ3h4OPz9/XkrT8SuKcS3 334LDw8PWFhYYNmyZQCME+uAlvcwPfbYY7Czs0OPHj2wZs0a3Lt3jzu+cuVKzgciIyMxbtw4nvix fft29OjRA5aWlhg1ahSmTJnCW60lxa5evXpxdRYUFIQjR45w36+vr8f06dNhZ2fH+a6rqys34Q20 9ishWH7BstOYNuTn54eAgAA4OTnBzs4OEyZM4AkuBQUFGDJkCORyOYKDgxEfH88T61jXrKysxKRJ k2BrawtXV1esWrWq1Qo2Md+6ffs2xo4dC2trazg7O6OiokLwPsR8RKpYZ4zP3r17F+vXr0ffvn1h bW0NNzc3TJkyhRP7hDh9+jRGjBgBW1tbeHl5Yfny5WhsbNT7fd131onFYH2iUVvqobGxEXPmzIGX lxcsLS3RrVs3rFq1ivvd2bNn0a9fP1hYWGD48OGiZfzBBx/AxMQE+fn5vM8bGhoQGxsLLy8vKJVK jBkzhmebtlgHiLd5KTFbyGZWXYrFealiHQCcPHkSTz31FJRKJZycnDBlyhTugYxt27ahb9++kMvl CAgI4L1Dz1ixLjg4GGq1GnZ2dpg4cSLvvYPGxC5DxTopvqcLy25j+wptsQ5g991idaVbLqz8x8PD Q9BmgiAIgiAIgiAIgiAIgs1DJ9YRhAZfX1/s27evo824L4SHhyM2Nlby9/VNDBOGU1JSAhMTE8nb xhL3B6qHhwOhd791NFJ8737ZvWnTplbbIhMEQRAEQRAEQRAEQRCdHxLriIeC2tpafPPNN7h48SKu XbuGdevWwdXVFX/++WdHm9Yu7Ny5E9nZ2aiurua2mjtx4oTk35NYZzw5OTnYt28fysrKUFRUhBde eAHPPPNMR5v10EH18HDSGcQ6Y3yvve2+cOECqqurMXr0aLzyyivtdl6CIAiCIAiCIAiCIAjiwUBi HfFQcPPmTfj7+8Pa2hoKhQKhoaE4depUR5vVbjz//POwt7eHlZUV/P39kZycbNDvSawznoMHD8LH xwcWFhZQq9WYMWMGysvLO9qshw6qh4eTziDWGeN77W13QEAALC0tMWLECG4LW4IgCIIgCIIgCIIg COKvA4l1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhHEARBEARBEARBEARBEARBEARBEB0EiXUEQRAE QRAEQRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQBEEQBEEQBEEQHQSJdQRBEARBEARBEARBEARB EARBEATRQZBYRxAEQRAEQRAEQRAEQRAEQRAEQRAdBIl1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhH EARBEARBEARBEARBEARBEARBEB0EiXUEQRAEQRAEQRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQ BEEQBEEQBEEQHQSJdQRBEARBEARBEARBEARBEARBEATRQZBYRxAEQRAEQRAEQRAEQRAEQRAEQRAd BIl1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhHEARBEARBEARBEARBEARBEARBEB0EiXUEQRAEQRAE QRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQBEEQBEEQBEEQHcRfXqwLCQnBpk2bHtj1Lly4AIVC gZ07dz6wa3ZWUlJS4O3trfd4TU0NZDIZLl26JOl8s2fPxpNPPonm5uZ2t4XoOPz8/JCUlNTRZhAE 0UmIjIzEnDlz2vWcmZmZGDhwICwtLREWFtau5ybah2HDhj3QfK29iIuLw+TJkzvaDOJ/uR85xc6d O+Ht7Q0LCwt8/PHH7Xpu4q/DL7/8AkdHx442o1PysLW79hhX3r17FzKZDGfPnm0fo0SIiopq97zq YeV+5KjEw8X9mJeiXPSvw7x58zBo0CDU1tZ2tCkAgF27dtE8aRt40OPXtsyJE38v2lWsKyoqglKp hImJCWxsbPD6668DAPbs2QMPDw/m75csWYKZM2cadM0HLdYNHz4cixYtemDX68y0t1h3584d+Pr6 4pNPPhH9npA/kVjX8dy+fRsymQwFBQW8z9tzgC81lnQ2Bg4ciMTExAd+XVNTU8hkMshkMpiZmcHb 2xsLFy7E3bt3ue80NzfjX//6FwICAmBlZQWFQoFRo0YhPT2d+8727dthZ2cHmUwGhUKBb7/9FgDw /vvvQyaTYeTIkbzrfvzxx3jyySd5n504cQLPPfccHB0dYWlpiZ49e+Lll1/GmTNn7l8B6GHMmDEG 9zVCGNNnPWwI+f79mAgZPHgwli9fjrq6OpSVlbXruf9KJCYmQi6Xd7QZgjysYl1nrpPOzIPIKQCg uroacrkcP//8M+rq6nD9+vV2Ozfx14LEOmp3Gkisa3+kjDceNEJ5/F9JrPvggw/aZVwsdXzt4eGB NWvWtPl6D5KZM2di/PjxD/SanV2s0xfn24Pp06dzcw/af/X19QCAhoYGREREwMHBAVZWVhg1ahQK Cwu531+4cAGPPfYYAgMDERwcjOzsbO5YcXExvLy8cPPmTUm2aM+DaP8tXbpU8HPNX1xcHA4dOqT3 uBj79++Hra0tiouLjSi9tiPUljujWHc/fbC9aev41dAY1JY58c6AoeNeY+6jrXG9oKAAMpkMJ06c AGD8nJ6+OdL24r6srPPw8MDXX3/N/f/vItb98ssvcHBwwI0bNx7I9To77S3WAcBPP/0ET09P3Llz R+93SKzrnJBYp5+OFOt+/PFH1NfXo7q6Gvv27YNMJsP+/fu577z++utwcHDAF198gStXriA3NxfL li2Dubk5fvjhB+57mk7t6tWr3Gfvv/8+HnvsMdjb2+PHH3/kPtcV6/7zn//A0tIS/+///T+cO3cO N27cwMmTJzF//nwsWbLkPpdCawoLC1FUVNTm85BYx+ZBiHXNzc2wsLBATk5Ou53zr0pVVRWysrI6 2gxBHlaxrjPXmV5ahAAAIABJREFUSWfmQYkGR44cgbOzc7udj/jrQmIdtTsNJNa1P1LHGw+Sv7pY V1FR0S65r9TxdU5ODq5du9bm6z1IioqKcPHixQd6zYddrIuIiEBlZSXvT8OSJUvg5+eH3NxclJeX Y9asWejfvz93fNasWVi+fDmAlvmECRMmcMdeeuklg8YRpqam+Pbbb1vZ8ueff3L/Pn36NGQyGY4f P859Vltby4l1xcXFeu9FiGHDhuH999+XbGN7Q2Jd+9PW8asxMcjYOfHOgKHjXmPuo61x/c6dO8jI yEBdXR2Ats3pCc2Rthf3XawrKSmBlZUVTExMIJfLIZfLBbeQ3LlzJ8zNzWFmZsZ9r6SkBMnJyfDx 8YGVlRXs7e0xZswYXqPWFuvu3buHl156CQMHDkR1dTUAIC8vD+PGjYOLiwu6du2K2NhYblXJtWvX 8MILL8DFxQUKhQLBwcGiT3e9+OKLmD9/Pvf/pqYmeHh44PPPP+d9b9asWZg7dy5n09q1a+Hr6wuV SoWhQ4fi5MmT3Hf9/Pzw9ttvY9KkSVAqlYiMjISHhwc+++wz3jlnzpzJnVOXyspKyGQyfPbZZxg2 bBgsLS3x73//Gw0NDVi2bBm8vb2hVCoxZswYnD9/nvvdnDlzEBUVxTuXh4cH9uzZw/3/+++/h5+f H6ysrNC7d2+o1WquvFNSUuDp6YlNmzbB29sbtra2eOGFF9DQ0ACAL9adO3cOJiYmvLq7d+8evLy8 8M033/A+c3Nzw759+wTvVZ8/sWzRV0YAsHfvXgwaNAgqlQq9e/duZY9Y/emSkpKCrl274qOPPoK7 uzvkcjkWLFiAM2fOYMyYMbCyskKvXr3w22+/cb9ZsmQJXF1dYWFhAbVajVdffZULHECLj8TExGD8 +PGwtrZGz5499ZaPNn5+fnjzzTcxatQoWFpaok+fPjh27BhWrVoFT09P2NnZYc6cOWhqauJ+c/z4 cQwfPhx2dnbo2bMn1q5di3v37vHubf369fD09GxVxv7+/pDJZLCxsYFcLkdkZCRnx1tvvYVnn31W 0P6TJ08iNDQUCoUCTk5OePrpp1FSUiK57gFg27Zt6Nu3L+RyOQIDA5GWliZaNtXV1QgPD4eHhwcU CgUef/xxHDt2TK+fsPxArA4jIyPRpUsXWFpaQi6Xo1+/fgBa2kdERAQ8PT3h7OyMqVOnoqKiQq/N rFgohKmpKa8sfv31Vzg5OeHy5csAWuKjiYkJfvrpp1a/jYqKgre3N7cEX59YN3HiRKxduxZ9+vTh Yqu2WNfc3Izu3bvzYqc22r6ujaYuVq9ejUceeQQ2NjZ48sknOZHNmLhXUlICuVwOMzMzXuwT6yeA liRi0KBBkMvl6NatGxYvXqy3zwJa/MHS0lKsagCItzfN/W3ZsgUDBgyAlZUVhg4dynv60FAfioyM xIQJExAeHg47Ozuo1WokJSXhhx9+QL9+/WBlZYXhw4fz2l9paSmmT58OJycnuLm54R//+Af3RCPL Rn2+HxkZieeeew5RUVFQqVRwdnbG6tWrRctKzI4hQ4ZAJpPB2toacrlcb/sXa6dSylsIff3H9evX 4e3tjaVLl3LfPXLkCBQKBU6dOgWgJTa+/vrrGDlyJKysrODn54cDBw5w3xerX33+rzsgk3IOsXvW FysBdrvR5A/W1tYIDAyEm5ub6GBHX1/wySefwNvbm2sbAJCfnw8zMzMUFRUZnMux+tysrCyEhoZC LpfDx8cH/fr14yZINGUWHx8PPz8/WFpa4qmnnsL58+cxd+5c2Nvbw9nZGfHx8dz5dOvE2D5dF7F+ j9VfA+z60+WvklMIoc+OGzduwMrKCjKZjIvjf/75p+A5HnvsMTg4OMDCwgLdu3dnri5gte/IyEhM njwZUVFRcHd35+KjWJkB4nm5vrggJfYZ4tPG5LqGjoc0u7OI0daYfv36dbz44otQqVRwcnLC8OHD mWIdtbvO2+6+//57uLi4cP/fvXs3rK2tuXP//vvvUCgUXHmL1UVKSgo8PDzwwQcfwN3dHSqVCuHh 4dzqECGampqwYsUKrlxHjRrFE+vE2sAnn3yCbt268ba9unDhAtfPAeLjVV2xTkrupi+/BozLP8Qw ZLzB6iPF8hJD8mJ9ebyUHFWsLnSRUt764p9YvOnXrx8sLS15Qgfr/nNzczF27FioVCqo1WpMnjwZ Z8+elTRXBwD9+/fnRPt79+4hLi4OXl5esLGxQZ8+fURzPKF7TEpK4tkPtMx5aR7klBLHWf6i3TYM 7Rfs7e0RGBho8EMcrPjBum9APBfVPm5jYwN3d3f07t2bd1zMF/TFeV3y8vLQt29f2NnZwcbGBoGB gUhNTRW99+nTp7eaX9TGxcWF518lJSWQyWTIzMwE0BLzd+zYAaClnfn7+wMAzpw5gz59+qCxsVH0 +trozoMIcenSJUHRSCPWicV8XS5cuIAuXbq02uHFmPG3WD+ur+3pmyvTHodInZPVRt84S8q5duzY AX9/f9jY2KBr16549dVXAej3QVa/bGjuKQQrrxAbvxqTM+v2z1LGgcbOiQPscYQuxvinWBnqjns1 558/fz5XPpo+Vd99sGKPMWWqjbZOITanJwWhOVKxezaETr+yLj8/H9nZ2bh9+zZu3LiBuLg43pZr GrGuubkZc+fORUhICLfyrbq6Gmq1GuvXr0djYyPKysoQEBCADRs2AGgRq6ZOnYrKykrcvHkTu3fv xt69e/Xa5+7ujp9//pn32fLlyzFkyBDu/zU1NbC2tsbp06cBAKtWrcKjjz6KwsJC3Lt3D4mJiXB3 d+f2MPbz84O3tzeSk5ORn5+Py5cvY/ny5QgODubOWVlZCUtLS+6cumiCxuOPP4709HScP38elZWV iImJQWBgIAoKCnD79m3ExcXB29ubG8iyxLojR47A2toaO3fuRFVVFTIyMtCrVy+eWGdqaoqFCxci IyMDR48ehVqtRkJCAlcW2ivrRowYgZiYGO5aP/74I5ydnVs9MRAeHo4333xTbz3oW1knZou+Mjp8 +DAUCgUOHDiA5uZmnDx5EkqlUnL96aKx480330RWVhYOHjzIdRwpKSkoKirCvHnz8Oijj3K/OX78 OC5evIi6ujqUlpZi9OjRWLFiBXfcz88PjzzyCFJSUlBQUIBFixZBrVbrLR/t3/n5+WHXrl24dOkS ZsyYATMzM8ybNw85OTk4evQo7O3tuQFWeXk5FAoFEhISUFtbi4yMDHTr1g1btmyRVMZiT+OK2e/t 7Y01a9agtrYWpaWlSEhI0CtCCdV9amoq7O3tkZ6ejvr6euzatQtWVlaiT3Q88cQTCAsLQ2lpKaqr q/H1119j9+7dev2E5QesOhRaXTR69Gg8//zzuHnzJhoaGvDyyy/jueee02szKxYKYWpqCoVCAUdH RygUCshkMrz22mvcxMXmzZv1DkAyMjIgk8mQm5sLQFysu3PnDnx8fLB582YAfLEuNzcXMpmM96CA FDR18cILL+D3339HTk4ORo8ejSeeeIJ33NC4B7QMiDSxj9VP/Prrr7C1tcWePXtQX1+Ps2fPYvHi xQD0P4Xz6aefYuzYsaL3x2pvmvsbN24c0tPTkZeXhxEjRmDatGncOQz1ocjISDg4OGDz5s0oKCjA hg0bYGpqipEjR+Lw4cMoKChAcHAwFixYAKBFaB08eDDmzJmD6upqlJWVYcyYMZg6dapkG/WtrFOp VNi4cSPy8vKwY8cOmJiYcL6mC8sOzdPrGRkZomUu1k6l3IsurP7jxIkTsLa2xk8//YRr166ha9eu 2L59O/d7Pz8/DBo0CD/99BMKCgoQGxsLlUrFTaiJ1a8+/9dNkKWcQ+ye9cVKVrs5cuQIbGxssGPH Dly7dg2ZmZm8/EEIfX3BrVu3YGtry0vSFy9ejGeffRaA4bmcmB/U1NRArVZj2bJlKC4uRmFhISZP ntxKrJswYQIOHz7MDSbs7e2xZs0aXLp0CUlJSTAzM0N5eTkAYbHOmD5dG1a/x+qvWfUnxF8lp9CF Zccvv/wCpVLJLPMDBw6grKwM9fX1yMnJgbu7u+iEAKt9R0ZGQi6XY/Xq1Th37hz3lLmYray8XF9c kBL7DPFpY3JdY8ZDLNoa08eMGYOnn34a58+fR3l5OVauXCk6KUvtrnO3u5qaGnTp0gV5eXkAWt77 Ymdnh+TkZADAmjVruFUarLpISUmBhYUFli9fjqysLBw+fBjdunXDe++9p9fWVatWoXv37jh8+DAq Kyuxf/9+nlgn1gY0/dx//vMf7nyxsbFcP8fKN7QnrqTmbvrya8C4/EMMQ8YbLF/Tl5ew7BZC38o6 sRyVVRe6SClvofgnZXybmJjIE33E7v/69etwdnbGqlWrcOvWLVy9ehXvvfceCgsLJc/VaYt1SUlJ 6NmzJwoLC9HQ0IBjx46JbtsmdI9SxTqxOM7yFyGxTkq/cOHCBVRUVOD99983SqwTix+s+2bloprj b731FsrLy1FYWIhJkybxxDoxX5C6qqmqqgpHjx5FVVUV6urqsGfPHtjY2IgKWNOnT4etrS3c3Nzw 6KOPYvHixVzeU1VVxa1i00apVHJx+tVXX+XG2e+99x5XN6NHj8b3338vaq8upqamkMvlUCqV3N+2 bdt432GJddq/1fzpY+vWrRg6dGirzw0df7P6T7G2J2VlndQ5WQ1i4yyxcxUWFsLMzAy//fYbGhsb kZ+fz+VoQj4opV82NPcUQiyvYI1fjcmZhYQlKfmUMXPiLN8RwlD/ZJWhkFgn1qcK3Qcr9hhbphp0 dYr2Xlln6FyXPjq9WFddXY2lS5ciODgYXl5eUKlUvA4zJCQE8fHxmDdvHoYOHcrbw/iTTz7hiV4A 8PnnnyM0NBQAMG3aNISGhiI7O5v5Ase7d+/CxMSk1XLL4uJimJmZcVsQbN68GSEhIdxxtVrd6gkU T09P/PrrrwCEtxUpLi6Gqakp94TJRx99hMGDB+u1TRM0dLebdHBw4G1Nd+/ePajVauzatQsAW6wL CwtDeHg477j2MmChJf4zZszgVtDoNoLk5GS4uLhwT8SMGzcOsbGxre7ngw8+4AYUQkjdBlPbFn1l NH36dF4HA7SsjHz33XcBsOtPFyE7goKCeE9X/PHHHzA1NeV8Ljc3Fy+//DL8/f3h4eEBuVzOS7Z0 fSQ/Px8ymYzbhuLxxx+HpaUl96d5B5ju7/bu3QsHBweebWPHjuU6zfj4eAQGBvKOb968mUsmWWUs descXftdXFwQFRUlaW9voboPCwvjkjoNU6ZM0ftUV05ODmQymeD7MfT5CcsPWHWoK1icO3cOZmZm vHhVWFgIc3Nz3tPR2rBioRCmpqb4+uuvcfXqVVy+fBm///47QkND8fTTTwMA3n33Xe5pfl2uXbsG mUyGgwcPAhAX6wDg22+/hbOzM27evMkT63799VfIZDLcvn1b1FZdhOri1KlTkMlkuHXrltFxD+CL dax+YurUqbzkRJu2dOys9iZ0f1u3bkXfvn0BGOdDulv71NbWQiaT8Qb+H374IScCZ2VlwcTEhLf1 c3Z2NmQyGWpqapg2AtK3wXR3d8d3330naDfLDqlinVg7lXIvurD6D6BlIsXBwQHDhw9vteWrbmxs amqCSqXCjz/+yKxfff6v+/SkoefQvmexWMlqN2FhYfjHP/7BO87aRkSsL4iIiOBiTX19PRwdHbkn 5gzJ5QBxP4iPj0fv3r1539feekiozKKjoxEWFsb7jbW1NRc7hcQ6sT5RCqx+j9Vfs+pPiL9KTqEL yw6pokFqaiqee+45+Pr6ws3NDebm5sxVBPraNyAcB1m2svJyfXHB0NjH8mljcl1jxkMs2hLTs7Ky IJPJUFpayh1nbYNJ7e7/7Ois7S4oKAiJiYlobGyEm5sbNmzYwPnypEmTuEk/Vl0IldO6deta3ZM2 jo6O3IoQoPU2mKw2EBERwXsIydXVlVsVwso3tCeujMndtPNrY/MPMQwZb4j5mlheYkxeLHUbTO0c VUrupw2rvIXuGZA2vtUW61j3v2XLFm6Vki7GiHUJCQlwc3NDenq66FZtGoTuUapYJ5abs2KTkFjH 6he0V1UYsz0yK36w7puVi8bHx8PX15eX82ofZ/mCVLGuqakJmzdvxsiRI+Hj4wNXV1deTBMiOzsb eXl5KCoqwi+//IJ+/fpxD7BeuXIFMpms1datHh4e3FixpKQEEydORP/+/TF+/HgUFRXhP//5DyeC rVu3DgEBAQgMDGy1E5kupqam+PLLL3Hp0iXuT3c+giXW5eXl8X4vFvfefvttzJ49u9Xnho6/Wf2n WNuTItZJnZPVIDbOEjtXTk4OTExM8NVXX7V6jZSQDxrTL7NyTyHE8grW+NWYnFlIWJKSTxkzJ87y HSEM9U9AvAyFxDqxPlXoPlixx9gy1fAgxDpD5rr00enFusGDB2P06NE4ffo06uvrkZ6ezkvuQ0JC 4O3tDZlMhi+++IL325iYGMjlcnh7e3N/Hh4eGDhwIADg6tWrmD59OlQqFWxtbTFhwgS9T3Jev34d MplMcJuOiRMnYuHChQCAAQMG4MsvvwTQsr2bTCaDh4cHzwZHR0ekpKQA0D84nThxIl577TU0Nzej Z8+erZ4C0UYoaGgamUbw0zBw4EBs3LgRAFusCwoKwtq1a3nHWWJdREQEt7xZtxHcuXMHLi4u+Pbb b3H58mWYm5sLlvdnn32GUaNG6b1fqWKdti36BhbBwcFwdHTk1Y9arUZUVJSk+tNFyI4RI0bg448/ 5v5/9uxZyGQy3L17F+Xl5VAqlVi8eDEuXryIu3fvYvny5dykJNDaR8rKyngB4erVqygoKOD+NJ22 7u902w4ATJ48GXFxcQBaOhrdpw/37NkDlUolqYylDvB17T906BBCQ0NhZWUFFxcXREZG6n1iS6ju g4KCWj2VvGTJEkyaNEnvOfRNEAj5CcsPpNShrmCRmpoKU1NT3vm8/3fbRt2tEzSwYqEQQts/HDt2 jBvobtq0qV1W1mkYMmQIli5dyhPrNANrY1fWaddFeXk5ZDIZ8vPzjY57AF+sY/UTAwcO5LVfbdrS sbPam9D9JScno0ePHgCM8yGhxEFX5Nq0aROGDRsGoGVS0N7envd9TTs/c+YM00ZAuljXu3dvXt6g DcsOKWIdq51KuRddxPoPbYKCgqBUKlutyBbq//v06YOtW7cy61eKWGfMObTvWSxWstoNK38QQqwv yMjIgJmZGUpKSrBt2zb07NmTG4gZksux/CA6OhrPPPMM7zcssU433gMtk7a//PILALZYp9snSoHV 77H6a1b9CfFXySl0YdkhRTRIS0uDXC7H1q1bUV5ejubm5la5nS5i7RsQjoMsW1ntSl+/aWjsY/m0 obluW8ZD+mhrTN+7dy9sbW1552RNylK7+z87Omu7W7ZsGWbPno20tDRMmjQJVVVVUCgUuH37NtRq NbKzswGw60KonHbu3Al3d3fB62ryT+2tXbXFOiltICMjAxYWFrh27Rp27dqF7t27c/0cK9/Qnrgy JnfTzq+NzT/EMGS8IeZrYnmJMXmxVLFOO0eVmvtpYJW30D0D0sa32mId6/6XLFnSKq5rMEasa2ho QHR0NDw9PWFubo7g4GDeVs+6tJdYp5ubs2ITS6xra78gBCt+sO6blYuyjrN8QapYFxsbix49eiAt LY0T/qQ8HKnNzz//zAnTmpV1uuN0pVLJe9BBm3v37qF///74/fffkZmZCZVKherqaly9ehU2Nja4 cuWK3ms/6G0wFyxYILgSytDxN6v/FGt7UsQ6qXOyGsTGWaxzJSYmwt/fH2ZmZrwVakI+aEy/LJZ7 CsHKK4zJs1k5M0tY0pdPGTMnzvIdIQz1T1YZShHrtPtUoftgxR5jy1RDR4h1YnNd+nggYl1qairc 3NyYv4uJicELL7zA/f/mzZtcYqlBSKybOXMmdu3aBWtra15A3rx5M4YPHy7J5oKCAjz22GOYMWOG 4HFNwi0UyNLS0uDo6IgjR47AwcGBF9SdnJywf/9+vdfVNzhNS0uDQqHArl274OTkxHvfgS5iK0z+ 53/+h/t/U1MTXFxcuBUm4eHhrZ7Q1RbrJkyYgOjoaN7xtoh1ALB06VI88cQTeOutt1olGRpWrlwp +hSBkD8ZK9ZNmTIF77zzjt5rsepPF0M7kd27d7cKnoaKdfowdIAfHx+PAQMG8I5v2rRJ9Glc7TLW DER1RRmp9jc1NeHo0aNwdHTkJrN0Ear7sLAwTizXvi99g6Y//vgDMplMcMsWfX4i5gdS6jA4OBif fvop9//s7GxYWFhITgClxEIhhJLUAwcOQCaToaqqCrm5uTAxMRHcf37RokXw9pb2zjoNv//+O6ys rLBw4ULeO+s8PT0xb948QRtZ76zTrotDhw7BzMwMt2/fNjruAXyxjtVPjB07Vu/KOt0+yxBY7Y01 oDTUhwDDkzHN09k1NTXccU380vd0tu4gWtf39dkhlsCw7JAi1rHaqTFiHav/AIAvvvgCvr6+CAoK avWknm5srK+vh62tLdLS0pj1K0WsM+Yc2vcsFitZ7ebZZ59t9US41Bd06+sLQkJC8N5772Ho0KGt BlIaWLkcyw/Wr1/f6onEzijWsfo9Vn9tSH6sz+7OnlNoYNkhRTRYtGhRqweADBXrtNs3oH9lnZit rLxcyD+NiX3tLdYBxo+H9NHWmH769GmYmJjwVh5IWVlH7a6Fztru9u/fj27dumHu3Lnc5O+4cePw z3/+E66urtz3WHUhVE6rVq3ivfpCF4VCwdvZQXdlnZQxZUhICNauXYvx48fjww8/5D5n5RtCK+sM yd2082tj8w8xDBlviPmaWF5iTF4slMezclQpuZ82rPIG9K+sY41vtcU61v1/+OGHelfWSZ2r0xbr tLl27RoWLFigV8wGhO9x+/bt6NWrF++zjhTrTp06BRMTE97D+e0l1mnHD9Z9s3LRdevWISgoSO9x li/oi/O6BAQE8B52BQwX63bt2gVzc3NuLtPFxYU33isuLhY9Z1JSEqZMmQKgRfDUXnnVq1cv0Zj6 oMW6uLg4vPTSS60+N3T8zeo/tdFte0JtWXccAkibkxVCaJwl5Vy1tbX46quvuIcUhHzQmH7ZULGO lVewxq8PUqwzZk7cEN/RYKh/ssrQULFO6D5Ysae9xbq2zOn95cW63NxcdOnSBSdOnMDNmzdRVVUl +LuEhAT06NEDFRUVKC0tRUNDA9RqNeLi4lBWVobffvsNISEhrcQ6TeP56quvIJfLcejQIQBARUUF nJycsHLlSlRUVODWrVs4duwYV5FLly5Feno6/vzzT9TU1GD8+PGiLzR3d3cXfGKoubkZPj4+8PHx adW433nnHfj7++PYsWOoq6vDpUuX8OWXX3Idgr7BqeacDg4OrbZa0EVf0hwTE4MBAwYgPz9f8N1N 8fHx8PDwQGZmJjIzM7Fw4UKYmppyYt1nn30GV1dXHDp0CEVFRUhMTIS9vX2bxLqLFy/C1NQUKpVK 7wtqX3nllVbbhWkj5E/GinX//e9/oVQq8cMPP+DWrVuoqKhAamoq984AVv3pYmgnkpOTA1NTU+ze vRvl5eVITk6Gu7t7h4h1ZWVlUCgU2LRpE2pra5GZmdnqPRdiZQy0JGAff/wx984hlv21tbWIiIjA 2bNn0djYiMLCQnTt2lXvnuRCdZ+amgqlUokDBw7w9vTXFra0uXfvHoYOHYqwsDAUFxfj5s2b2LFj B++ddbp+IuYHUupw2rRpmDp1Kv78809cuXKFewJl2rRpuHDhAurq6pCTk4OPPvpI0Obm5mZmLBTC 1NQUP/74I+rr63Hr1i38/vvvCAwM5G3RGRkZCUdHRyQlJeHq1avIy8vD22+/DQsLC/zwww/c96SI dUDLtpFWVlacWAe0TKqZmZlh/vz5yMrKQlVVFU6cOIE33nhD717cmrrYsWMHampqcPbsWQQFBXEx 2ti4B/DFOlY/kZaWBltbW/z444+ora1FTk4Oli5dCqB1n6VZ1SrlnXWs9sYaUBrqQ4DhyVhzczNC QkIwa9YsVFVV6X3vidggWtf39dkhlsCw7JAi1rHaqTFiHav/OH78OOzt7XHmzBlcunQJ9vb2+Pzz z7nf+/n5YeHChSgvL0dxcTFeeeUVBAQEoKmpiVm/UsQ6Y86hfc9isZLVbr744gtuq8pz585h3bp1 sLOz0yvWSekLkpKS4ODgAGtra14eaUgux/KDgoICmJmZYcuWLSgoKMDOnTvRs2fPTifWsfo9Vn/N qj8h/go5hRAsO6SIBgkJCejatSsyMzNx9epVrFy5ElZWVkyxTl/7BoTjIMtWVl4u5J/GxL77IdYZ Ox7SR1tj+t27d9GjRw+88sorOH/+PA4cOIAnn3yS+c46anfgrtMZ211DQwOsra3h7OzMCSFfffUV bG1teU9Ns+oiJSUFjo6OOHXqFG7cuIH9+/dDrVaLvjNp9uzZGDRoEDIyMnDq1CksWLCAJ9ZJGVMm JSXBy8sLNjY2PEGKlW/ovrNOSu6mL782NHcoKSnBk08+yXvfnhBSxxtiviaWlxiTFwvl8awclVUX urDKW+ieAXa8AfhiHev+S0tLoVKpsGrVKtTU1KCkpASrV6/GhQsXJM/VaYt1n376KXbs2IHKyko0 NDRgxYoVesVAffd45swZmJiYYPfu3cjPz8fGjRuhUqk6TKxrbGyEj48P3njjDVy5cgXHjx/HxIkT jRLrxOIH675ZuWheXh7MzMywbds2FBcXY+/evfDz8+OOS2kLQnFel2nTpmHMmDG4fPkycnNzMXv2 bNHx1q1bt/DKK6/g4MGDqKiowKFDh+Dr64vXXnuN+86iRYvg5+eHK1euoLKyErNnz4afn5/gtoV1 dXXw8fHhYuQff/zB9V+NjY1QqVS4cOGC3npoD7GuuLgYlZWVvD99bN26FY8//nirzw0df7P6T7G2 J9SWhcTUeYhSAAAgAElEQVQ6KXOyGljjLH3nOnToEFavXo3Lly+jqakJ//3vf2Fubs69y03XB6X0 y20V61h5BWv8+iDFOmPmxFm+I4Sh/skqQ0PFOqH7YMWe9hbrhHIBqbnNX0asu3LlChwdHdGlSxfY 2tryngaKjo6GUqmEra0tJwbpcvv2bYwdO5ZLsisqKpCeng5fX19YW1tjyJAheOutt/SKdQCwYcMG KJVKnDp1CkDLkyUTJ06EWq2GjY0N+vfvz23JtWbNGvTp0wfW1tZwcXHBSy+9xO0dLsTMmTOxaNEi wWMffPABTExMuO0MNNy9exfr169H3759YW1tDTc3N0yZMkXv4Eeb1atXo0uXLq3ek6eLvkm7hoYG xMbGwsvLC0qlEmPGjOE9vVBfX4/p06fDzs4OvXr1wvr16+Hq6srVT1NTE2JiYuDi4gI7OzuEh4fD 39+fWyVhjFgHAE8//TRvaw/d8nJxcWF2rLr+ZKxYB7QsvR0yZAiUSiXs7e0RGhrKCb6s+tPFmE5k 48aNcHZ2hkKhwKRJkzBz5swOEeuAliToscceg52dHXr06IE1a9bg3r17eu9Nd4D/7bffwsPDAxYW Fli2bBnT/sbGRsyZMwdeXl6wtLREt27dsGrVKtH7Eool27ZtQ9++fSGXyxEQEMBMOsrKyjB79my4 urrCzs4OI0aMwB9//KHXT1h+wKrDs2fPol+/frCwsOCeGLp+/ToiIyPRrVs3WFlZoXv37njjjTf0 2syKhUKYmppCJpNBJpOhS5cucHV1xfz583lPkjc3N2PLli3o168fLC0tYWtriyeeeIL3pFpycjJU KhVkMhlUKhW3ZY+QWFdYWAgLCwueWAcAv/32G8aOHQuVSgUzMzN4e3tj7ty53JZEumjqYuTIkVAo FFCr1Vi0aBH3hJuxcQ/gi3WAeD+huf8BAwbAxsYG3t7eXOIk1GcBLUvpLS0t9VfM/yLW3qQMUA31 IUOTMaBlcD9t2jQ4OTnB1dUV4eHhnP9IsVHI941JYMTskPrOOrF2aoxYB+jvPyoqKtC1a1eeH2km WjTbZPn5+SE4OBhqtRp2dnaYOHEi731tYvUrRawz5hy696wvVgLi7aapqQmxsbFwcXGBq6srXn/9 dfTv31+vWCelL6irq4NKpWr11KqhuRwrXmvKQKlU4tlnn8Xzzz//wMW6nj176t3KWYNYvyelv2bF PV3+CjmFPsTskCIaNDY24qWXXoKtrS1cXV0RFRWFwMBAplgn1r6F4iDLVlZeri8uGBr77odYZ+h4 aO7cuXB1dRXdWaStMT0zMxPBwcGQy+UIDg5GbGwsc1KW2l0LnbXdAcCoUaN48fPGjRuwtLRs9boM sbpISUmBUqlE//79ub7zX//6l+h1r1+/jsmTJ0OhUHDjam2xTsqYUtPPCW3HJDZe1Z24kpK76cuv NfciNXfQTFSxxHYp4w2A7WtieYmhebFQHi8lRxWrC12klLe++SDW+FZbrJNy/ydPnsRTTz0FpVIJ JycnTJkyhRMfpMzVaYt1qamp3IOjSqUSo0aNavUuMm303ePKlSs5P42MjMS4ceM6TKwDWlZdBwUF wdLSEn5+fli0aFGrVR+sHE1K/BC7b227hHJRoGV1Xo8ePWBpaYlRo0ZhypQpvJUhLF8QivO6XLly BSNGjICVlRV8fX2xceNG0fFWQ0MDZsyYwcvlly1bxvP1uro6zJ07F/b29tzDvfoegl+5cmWrh++i o6MxYcIEPP3008w5o/YQ64T+9FFQUABzc/NW79Q0Zvwt1n+y2p5uWxYS6wDxOVltpIyzhM5VUFCA sWPHwtnZGdbW1hgwYAB2797NHRfyQVa/3FaxjpVXsMavD0qsM3ZOHBD3HSEM9U9WGRoq1gndByv2 tLdYJ5QLSMlt9M2Rdkqx7u/Ovn374Orq2uq9M/eLt956C+PGjXsg15KKr68v9u3b16ZzDB06VO9T bt999x08PDwkvaiYIIi/L8ZssyOVyZMnt9pKjCAeNIauJHnYqampgVwux/HjxzvalPuKZuLg8OHD HW0K0QYeVPtuj7y8M+Lt7Y1//vOfHW0GQfztuJ/5NdGa+1nemzZtarUdItG+bN++HYMHD+b+31lz tPDwcMTGxna0GQ89gwcPxrp16zraDEmIzcl25LkImhMnWiCxzkCGDRtm0D7lxlJfXw8nJyf89NNP 9/1a+qitrcU333yDixcv4tq1a1i3bh1cXV15+3gbyvHjx2FlZdXqiRPN9bp164bNmze3xWyCIP4G tPfgtq6uDsXFxSgsLISbmxu2bdvWLuclCGMhsc4wPvroIwwaNKijzbjv/Otf/0JISEhHm0G0kfvR vu9HXt4ZycvLg42Njd6t2AiCMB4S6x4s96O8L1y4gOrqaowePRqvvPJKu52XaNnm9NixY6iqqkJm Zib69evHe09yZ8nRdu7ciezsbFRXV3Nbpp44caKjzXro+fnnn6FSqQTnOjsTYnOyHXkugubEif+D xDoDKSgogL29Pfbu3Xtfr5OYmAgfHx/RJav3m5s3b8Lf3x/W1tZQKBQIDQ3lthc1lpkzZ2L27Nmt Pm9ubkZYWBieeOIJ5lJsgiD+/rT34LaoqAj29vaws7PDyy+/zL03iCA6ChLrpNPU1ARvb+9W25j9 HQkLC8N3333X0WYQbeR+tO/7kZd3RuLj4zF//vyONoMg/paQWPdguR/lHRAQAEtLS4wYMcKg990S bNavXw+1Wg0LCwv4+PjgnXfeQWNjI3e8s+Rozz//PLeVpL+/P5KTkzvaJOJ/iYiIwMiRIzv1qih9 c7Idfa6HHZoTJ7QhsY4gCIIgCIIgCIIgCIIgCIIgCIIgOggS6wiCIAiCIAiCIAiCIAiCIAiCIAii gyCxjiAIgiAIgiAIgiAIgiAIgiAIgiA6CBLrRIiOjoajoyPkcjmOHz/e6nhKSgq8vb3vux2//PIL HB0d7/t1/irk5ORAJpMhNzcXABAVFYU5c+YAAGpqajrdPvxxcXGYPHlyR5shCvkY8XfmfrTBzMxM DBw4EJaWlggLC2vXcxOdl8jISK6/Ie4/2v07QRAEQRAEQRAEQRDE35l2F+sGDhyIxMTE9j7tA2ff vn1wd3fHxYsXUVNTgz///LPVd0is6xjKy8shk8lw7do1ACTWSWHmzJkYP3683uPkY4Qh3L59GzKZ DAUFBR1tiiTuRxscPHgwli9fjrq6OpSVlbXpXH+XflOIJUuWYObMmbzPEhMTIZfL79s128s/hWwn sa7teHh4YM2aNZK+yxLrXnvtNVhbW6NLly5QKpUoKSmRdF6huu0I9uzZAw8Pj442gyAIgiAIgiAI giCITgCJdXpYuXIlpk6dKvodEus6hsbGRpiamuLevXsASKyTQlFRES5evKj3OPkYYQgPu1jX3NwM CwsL5OTktMv5/i79phBCokhVVRWysrLu2zVJrOvc5OTkcA/bsJCysi4xMRE9evQwyAYS6wiCIAiC IAiCIAiC6Gy0q1gXGRmJLl26wNLSEnK5HP369QPQIqBERETA09MTzs7OmDp1KioqKgAAlZWVkMlk +OyzzzBs2DBYWlri3//+N1JSUtC1a1d89NFHcHd3h1wux4IFC3DmzBmMGTMGVlZW6NWrF3777Tfu +jt27IC/vz9sbGzQtWtXvPrqq6L2btu2DX379oVcLkdgYCDS0tIAtEyemJubw9TUFHK5HMOHDxf8 fUpKCjw9PbFp0yZ4e3vD1tYWL7zwAhoaGrjvPPbYY3BwcICFhQW6d+/Oe5o8JSUFXl5e2LJlC/r0 6QNzc3NUVFTg+vXrePHFF6FSqeDk5IThw4dzQsr3338PFxcX7hy7d++GtbU1t/Lv999/h0KhwN27 d5GXl4e+ffvCzs4ONjY2CAwMRGpqKvP6YvUlhU8++QTe3t6cmAYA+fn5MDMzQ1FRkWjZA0BSUhL6 9+/PO+fMmTOxZMkS7v8rV67k/m2oWOfn54eYmBiMHz8e1tbW6NmzJ/bt28cdv3fvHtauXQtfX1+o VCoMHToUJ0+e5I6zyicrKwuhoaGQy+Xw8fFBv379RIWC5ORk+Pj4wMrKCvb29hgzZozoJLOmzcTH x8PPzw+WlpZ46qmncP78ecydOxf29vZwdnZGfHy8YBkBEPUxMfz8/PD2229j0qRJUCqVeP3115n2 s8q7qakJK1asgKenJ2xsbBASEoIuXbrg7NmzkupDl3v37iEuLg5eXl6wsbFBnz59sGnTJu743r17 MWjQIKhUKvTu3RvffPMNdywyMhKTJ09GVFQU3N3d0a9fP0yfPh2zZs3iXePzzz+Hr68vmpubmfYJ lZkQTU1N+Oijj+Dr6wsbGxv069cPX375JQCgtLQU06dPh5OTE9zc3PCPf/wDN2/eBGCcP6SkpMDd 3R3vvvsu3NzcoFKpMHfuXNTX1wNgt0F/f3/IZDLY2NhALpcjMjISgHGxXghW3OzatSvWr18PT09P wbhraBtkxUpdhgwZAplMBmtra8jlcqSlpTHPcfLkSYSGhkKhUMDJyQlPP/00SkpK9PabQuTm5mLs 2LFQqVRQq9WYPHkyKisrAYjH1MjISEyYMAHz58/n/GH16tUGlWleXh7GjRsHFxcXdO3aFbGxsbh7 9y53fM+ePRg0aBDkcjm6deuGxYsXY+fOnTA3N4eZmRnkcjnkcjlKSkqwa9cu3oMuYv4NsGOILvr8 8/jx4xg+fDjs7OzQs2dPrF27ltdPaaPP9sjISDz33HOIioqCSqVqVZaAeIwRorq6GuHh4fDw8IBC ocDjjz+OY8eOMW02Jk/S+EJ4eDjs7OygVquRlJSEH374Af369YOVlRWGDx/OW6EmVvf68gixeNa/ f38kJSVx5xZrN8aKdWI+o69ujYnlbWk7JSUlsLKygomJCWfHzp07Re+VIAiCIAiCIAiCIIi/Lw9k Zd3o0aPx/PPP4+bNm2hoaMDLL7+M5557DsD/TeA+/vjjSE9Px/nz51FZWYmUlBSYmprizTffRFZW Fg4ePMhNPKWkpKCoqAjz5s3Do48+CgAoLCyEmZkZfvvtNzQ2NiI/Px8rVqzQa2dqairs7e2Rnp6O +vp67Nq1C1ZWVtzT/nFxcZg4caLovWpsXLhwITIyMnD06FGo1WokJCRw3zlw4ADKyspQX1+PnJwc uLu7cxNnKSkpMDExwdy5c3H69GmcPXsWjY2NGDNmDJ5++mmcP38e5eXlWLlyJSek1NTUoEuXLsjL ywMAzJ49G3Z2dkhOTgYArFmzBhMmTADQsnrh6NGjqKqqQl1dHfbs2QMbGxtuQl7f9cXqSwq3bt2C ra0tb8Jt8eLFePbZZyWVvRSxThtjxLpHHnkEKSkpKCgowKJFi6BWq7njq1atwqOPPorCwkLcu3cP iYmJcHd3R21tLQBxf66pqYFarcayZctQXFyMwsJCTJ48WVQoyM/PR3Z2Nm7fvo0bN24gLi4OI0eO 1Pt9TZuZMGECDh8+zE122tvbY82aNbh06RKSkpJgZmaG8vLyVmUEQNTHxPDz84O3tzeSk5ORn5+P y5cvM+2XUt7du3fH0aNHUV1djZ9//hkymYwT61j1oUtSUhJ69uyJwsJCNDQ04NixY/jkk08AAIcP H4ZCocCBAwfQ3NyMkydPQqlU4vTp0wBaJrLlcjlWr16Nc+fOITc3F+np6bC2tsaNGze4awwePBjr 16+XZJ9QmQmxYsUKPPLIIzhz5gzq6uqwf/9+rFu3Ds3NzRg8eDDmzJmD6upqlJWVYcyYMdzKX2P8 ISUlBRYWFli+fDmysrJw6NAheHt747333uPKUKwN6lu5ZEysF4IVN8XirjFtkBUrdbl79y5kMhky MjIkn8Pb2xtr1qxBbW0tSktLkZCQwJWflJV1169fh7OzM1atWoVbt27h6tWreO+991BYWMiMqZGR kVCpVNi4cSPy8vKwY8cOmJiYcO/9ZJVpdXU11Go11q9fj8bGRpSVlSEgIAAbNmwAAPz666+wtbXF nj17UF9fj7Nnz2Lx4sUAhFcwaYt1LP8G2DFEFyH/LC8vh0KhQEJCAmpra5GRkYFu3bphy5Ytes+j b2WdWFmyYowQTzzxBMLCwlBaWorq6mp8/fXX2L17N9NmQ/Mkjf0ODg7YvHkzCgoKsGHDBpiammLk yJE4fPgwCgoKEBwcjAULFgBg172+PEJfPAP4Yh2r3bRFrBPzGaG6NSaWt7Xt0Mo6giAIgiAIgiAI giA03Hex7ty5czAzM+M9JV9YWAhzc3M0NTVxE7i64orQFpNBQUG81SF//PEHTE1N0dzcjJycHJiY mOCrr77iTarrIywsjJtM1DBlyhRERUUBkC7W6do4Y8YMzJ8/n/t/amoqnnvuOfj6+sLNzQ3m5ubc Kh+h32dlZUEmk6G0tJT7THeLwqCgICQmJqKxsRFubm7YsGEDwsLCAACTJk3iJoGampqwefNmjBw5 Ej4+PnB1deWJIELXZ9WXVCIiIrjyq6+vh6OjI/dUO6vsH4RYp5koBFrEMu134KnV6larajw9PfHr r78yyyc+Ph69e/fm/Za1BV91dTWWLl2K4OBgeHl5QaVSiQpnQm0mOjqa8wEN1tbWOHjwIAB+GbF8 rKGhAZaWltyf9gSnbtlJsZ9V3o6Ojti+fTt3XCOEaPxUrD6ESEhIgJubG9LT03Hnzh3esenTpyMm Job32axZs/Duu+8C0L/FXZ8+fbgJ8uzsbFhbW6O6ulqSfUJlJoSzs7PgSrOsrCyYmJjw4lp2djZk MhlqamqM8gehtr9u3ToEBgYCME6sMzbWC2Fo3NSOu8a0QVas1EVIrGOdw8XFBVFRUSguLm51Pili 3ZYtW+Dv7y94jBVThfza3d0d3333HQB2mX7yyScIDg7mHf/8888RGhoKAJg6dSon7ujCEutY/g2w Y4guQv4ZHx/P+beGzZs3t/Jzlu2ssmTFGF1ycnIgk8lw/fr1VsdYNhuaJwnZX1tbC5lMxtuW9MMP P+QeuGDVvb7twPXFM4Av1rHaTVvEOjGfEapbY2J5W9sOiXUEQRAEQRAEQRAEQWi472JdamoqTE1N 4e3tzftTKpUoKyszSKwbMWIEPv74Y+7/Z8+ehUwm47ZjSkxMhL+/P8zMzNCrVy/e1ne6BAUFcaKW hiVLlmDSpEkAjBfrIiIiuO0309LSIJfLsXXrVpSXl6O5uZl3D0K/37t3L2xtbXmf6Yp1y5Ytw+zZ s5GWloZJkyahqqoKCoUCt2/fhlqtRnZ2NgAgNjYWPXr0QFpaGjeBrj3BLHR9Vn1JJSMjA2ZmZigp KcG2bdvQs2dPbrKQVfYPWqwrKyuDTCbD1atXUVdXB5lMBg8PD979Ozo6IiUlhVk+0dHReOaZZ3jX YwkFgwcPxujRo3H69GnU19cjPT0dSqVS7/eF2szy5ctb+aujoyN++eWXVmXE8rHm5mYUFBRwf9rv uhOarGTZL1bemoli7a3GtMU6Vn0I0dDQgOjoaHh6esLc3BzBwcE4cOAAACA4OBiOjo68c6nValFR AwA+/vhjBAQEcGX50ksvAYAk+6SIdRpxQVv80bB3717Y29sLfv/MmTNG+YNQ29+5cyfc3d0BGCfW GRvrdTEmbmrHXWPaICtW6iIk1rHOcejQIYSGhsLKygouLi6IjIzkVg9JEeuWLFmit09ixVQhv+7d uze+/vprAOwyjYmJgVwu59Wrh4cHBg4cyNmv3Tfr2iEm1rH8GxCPIUII+Wd0dHSrFeJ79uyBSqUS PIc+21llyYoxuuzZs0dvvGfZbEyeJGS/ri9v2rQJw4YNA8CueyEbxOIZwBfrWO2mvcQ6XZ/RrVtj Y3lb287/b+9+Y6os/ziOg0vgyMETcghYLlHQTZuGzcFwNdvSNZirxYhFM3Ct5gOZ5oPUZGz2ByJr Fllt9qCiGdaD3NCF1fxXrAFqRSk6QKepwE6I/FEYKvD5PXDcP8/hPvd9wCOnn7/3a/s+8JzD8eK6 7+sLOx+u+yasAwAAAAAAo4Ie1qWnp2vnzp3Gv0+ePKmIiAi/lxMLZlg3qr+/X5WVlQoLC1NLS4vp /5uTk6NXX33V67HRe1VJwQnrNmzYYHxYavY9mH3977//rvDwcK/dKb5h3cGDB5WcnKyXX35ZVVVV kqTs7Gy9/fbbSkxMNF63ePFiVVRUeL2/XVhnd7zGIyMjQ2+++aaWLl2q999/33jcbu6//vprzZ07 1+v5yQrrJMntduvgwYOmX2s3P9u3bx+zE8IqKOjt7fX6UFrSXQ/rAjnH/PGdu0DGbzffMTEx+v77 743nfXfWWR0PO//884+KioqMECo3N1clJSV+X+8vrLty5YocDod+/fVXxcXFqaGhwXjObnyBhHXD w8NyOp2WO+tGdxlJ/+19/nbWTSSse+utt5SRkSHJfg2OfrDd3NxsPD/RXu9rIn3z9r473jUo2fdK X2ZhXaDvMTQ0pLq6OsXFxemzzz6TNPbnppl3333XcmedVU+907Du448/9nvvVknKysryu7Nu48aN ys/P93rMbGedv/NbGn9YZ3Z+fvTRR0pLS/N63Y4dOyx31pmN3W4u7XqMr4aGBoWFhZleEtZuzJMR 1tkde7MxWPUzyTuss1s3dyusMzu2E+nld7p2ampqlJSU5Pd5AAAAAADw/yPoYV1eXp6ee+45Xbt2 TRcuXDB2ReTl5enMmTMaGBhQU1OTtm3bJil4YV1tba3Ky8t1/vx5DQ0N6cCBA5o6dapxjyZfNTU1 crlcOnTokNc9fkZDh2CEdZ9++qlmzpypxsZGXbx4UaWlpYqKirL80PnmzZtKSUnRSy+9pObmZh06 dEhPPvmkV5AyODgoh8Oh+Ph4Xb16VZJUWVkpp9Pp9ZfieXl5euqpp3T+/HmdOnVKBQUFtmGd3fEa jy+++EIzZsyQw+FQV1eX8bjd3P/5558KDw9XdXW1WlpaVFFRodjY2EkL60pKSrRw4ULV19drYGBA 586d05dffqnW1lbb+WltbdV9992nTz75RK2trfrmm2+UmprqNygYGRlRQkKCiouL1dHRoV9++UUZ GRl3NawL5BwLdO4CGb/dfK9atUqPP/64mpubdfr0aRUXF3uFdVbHw8zOnTtVVVWlzs5ODQ4O6o03 3jBCjgMHDsjlcmnPnj3q6+uTx+NRTU2NfvzxR0n+wzpJKiws1OzZs8cEQXbjC/QymJs3b9b8+fP1 xx9/aGBgQEeOHNGHH36okZERZWRk6MUXX1RXV5ffe9aNN6yLi4vTb7/9pp6eHv30009yu9367rvv JAW2Bh944AF98MEHxj3YJtrrfU2kb97ed8e7BiX7XunLLKyzeo/+/n6tWbPGuJ/X2bNnNXPmTGO+ fX9ummlvb1dsbKzKysrU3d2ttrY2lZeX68yZM7Y99U7DOo/HI7fbrdLSUnk8HvX19am+vt44r/fv 3y+n06m9e/eqv79fTU1N2rRpk6RbxzMlJUUej0ft7e26fv36mHvWWZ3f0vjDOmns+dnR0aHp06dr x44d6u/vV2Njo+0968zGbjeXdj3G1/DwsJYuXaqcnBxdunRJvb29qqqqUnV1te2YJyOsszv2/i6D 6a+fSd5hnd3au1thndmxnUgvv9O1c+rUKU2ZMkXHjh1Tb2+v8bvSO++8M2ZXJwAAAAAAuLcFPaw7 ceKEFi1apIiICOOviS9fvqy1a9cqOTlZUVFRmjNnjtatWycpeGFda2ursrKyFB8fL4fDobS0NFVX V1uO9auvvtKCBQsUHR2txYsXe92rJBhh3Y0bN7R69Wo5nU4lJiZq/fr1evTRRy0/dJakxsZGpaen Kzo6Wunp6dq8efOYIGXFihVeu096enoUGRmpzz//3HjswoULWrZsmaKiojRv3jxVVFTYhnWS9fGS pF27diksLEyNjY2W8zMwMKDY2FjjkoG3s5p7SSotLZXb7VZiYqLWrl2r7OzsSQvrbt68qe3bt2vB ggVyOBxKSkpSbm6ucY83u/nZvXu3UlJS5HK59PTTT+v555+3DAoOHz6sefPmyeFwKDMzU1u2bLmr YZ0U2DkWyNwFMn67+e7s7NSzzz5rrJOysjKvXTF2x8NXTU2NERi6XC6tWLFCTU1NxvP79u1TZmam XC6X7r//fj3xxBOqra2VZB3W1dXVKSwsbMzlCu3GF2hYd/36dW3dulVz5syRw+HQwoULVVlZKelW UJOXl2esiVdeecXYGTnRsG769OnKzMyUw+FQamrqmO/Lbg1+++23evDBBxUREaHXX39d0sR6va+J 9M3b+640/jVo1yt9mYV1Vu9x48YNFRYW6qGHHlJkZKSSk5NVVlZmfK3Zz00zx48f1/Lly+VyueR2 u5Wbm2vsyLLqqXca1km3dk4+88wzSkhI0LRp0/TII494nTO7d+9WWlqapk2bplmzZnldMjUrK8v4 AxOPx+MV1knW57c0sbDO7PxsaGjQY489ppiYGKWkpOi9997T8PCw3/cwG7vdXErWPcZMR0eHCgoK lJiYqJiYGC1btszYvWs15skI6yTrY+/v9wirfnZ7WGe39uzCuqKiIjmdTk2ZMkVxcXF++67vOWN2 bCfSy4Oxdl577TW5XC45nU7t27dP0q2dzGbzCgAAAAAA7l1BD+tw7ysoKNDy5cttX9fd3a3o6Ggd PXp0EkaFe0VbW5vCw8ODcilWmPP3ATsAAAAAAAAAYPIR1mHckpKStH//ftvXbdu2TUuWLJmEEeF/ WVNTk3744Qd1dHTo77//Vn5+vlauXBnqYd3TCOsAAAAAAAAA4N+DsA7j8tdff+nhhx+2fd3Q0JBm zZrldVlOwMzPP/+s2bNnKyIiQgkJCXrhhRf83msSwUFYBwAAAAAAAAD/HoR1AAAAAAAAAAAAQIgQ 1gEAAAAAAAAAAAAhQlgHAAAAAAAAAAAAhAhhHQAAAAAAAAAAABAihHUAAAAAAAAAAABAiBDWAQAA AAdMSRkAAACVSURBVAAAAAAAACFCWAcAAAAAAAAAAACECGEdAAAAAAAAAAAAECKEdQAAAAAAAAAA AECIENYBAAAAAAAAAAAAIUJYBwAAAAAAAAAAAITIuMK6kZERiqIoiqIoiqIoiqIoiqIoiqIoiqKC VH7DulAPjKIoiqIoiqIoiqIoiqIoiqIoiqLu9eIymAAAAAAAAAAAAECI/AfI/8L+8VrOYwAAAABJ RU5ErkJggg== --00000000000073a14405bdb5305e--