Consider a transaction where 10 people have each brought 10 inputs of arbitary amounts in the neighborhood of ~0.1 BCH. One input might be 0.03771049 BCH; the next might be 0.24881232 BCH, etc. All parties have chosen to consolidate their coins, so the transaction has 10 outputs of around 1 BCH. So the transaction has 100 inputs, and 10 outputs. The first output might be 0.91128495, the next could be 1.79783710, etc.
Now, there are 100!/(10!)^10 ~= 10^92 ways to partition the inputs into a list of 10 sets of 10 inputs, but only a tiny fraction of these partitions will produce the precise output list. So, how many ways produce this exact output list? We can estimate with some napkin math. First, recognize that for each partitioning, each output will typically land in a range of ~10^8 discrete possibilities (around 1 BCH wide, with a 0.00000001 BCH resolution). The first 9 outputs all have this range of possibilities, and the last will be constrained by the others. So, the 10^92 possibilies will land somewhere within a 9-dimensional grid that cointains (10^8)^9=10^72 possible distinct sites, one site which is our actual output list. Since we are stuffing 10^92 possibilties into a grid that contains only 10^72 sites, then this means on average, each site will have 10^20 possibilities.
Based on the example above, we can see that not only are there a huge number of partitions, but that even with a fast algorithm that could find matching partitions, it would produce around 10^20 possible valid configurations. With 10^20 possibilities, there is essentially no linkage. The Cash Fusion scheme actually extends this obfuscation even further. Not only can players bring many inputs, they can also have multiple outputs.
---------END QUOTE ---------