If / when Schnorr signatures are deployed in a future witness version, it may be possible to have non-interactive partial aggregation of the signatures on a per-block basis. This could save quite a bit of space. It *seems* not to have any security problems but this mailing list is very good at finding vulnerabilities so that type of feedback is the main reason I'm writing :) (A quick explanation of why this is horribly broken could save me lots of time!)(also sorry if this has been discussed; didn't see anything)Quick recap / context of Schnorr sigs:There are a bunch of private keys x1, x2, x3...multiply by generator G to get x1G = P1, x2G = P2, x3G = P3Everyone makes their sighash m1, m2, m3, and their random nonces k1, k2, k3.To sign, people calculate s values:s1 = k1 - h(m1, R1, P1)x1s2 = k2 - h(m2, R2, P2)x2(adding the P2 into the e hash value is not in most literature / explanations but helps with some attacks; I beleive that's the current thinking. Anyway it doesn't matter for this idea)Signature 1 is [R1, s1]. Verifiers check, given P1, m1, R1, s1:s1G =? R1 - h(m1, R1, P1)P1You can *interactively* make aggregate signatures, which requires co-signers to build an aggregate R value by coming up with their own k values, sharing their R with the co-signers, adding up the R's to get a summed R, and using that to sign.Non-interactively though, it seems like you can aggregate half the signature. The R values are unique to the [m, P] pair, but the s's can be summed up:s1 + s2 = k1 + k2 - h(m1, R1, P1)x1 - h(m2, R2, P2)x2(s1 + s2)G = R1 + R2 - h(m1, R1, P1)P1 - h(m2, R2, P2)P2To use this property in Bitcoin, when making transactions, wallets can sign in the normal way, and the signature, consisting of [R, s] goes into the witness stack. When miners generate a block, they remove the s-value from all compatible inputs, and commit to the aggregate s-value in the coinbase transaction (either in a new OP_RETURN or alongside the existing witness commitment structure).The obvious advatage is that signatures go down to 32 bytes each, so you can fit more of them in a block, and they take up less disk and network space. (In IBD; if a node maintains a mempool they'll need to receive all the separate s-values)Another advatage is that block verification is sped up. For individual signatures, the computation involves:e = h(m1, R1, P1) <- hash function, super faste*P <- point multiplication, slowestR - e*P <- point addidion, pretty fasts*G <- base point multiplication, pretty slowwith s-aggregate verification, the first three steps are still carried out on each signature, but the s*G operation only needs to be done once. Instead another point addition per signature is needed, where you have some accumulator and add in the left side:A += R - e*Pthis can be parallelized pretty well as it's commutative.The main downside I can see (assuming this actually works) is that it's hard to cache signatures and quickly validate a block after it has come in. It might not be as bad as it first seems, as validation given chached signatures looks possible without any elliptic curve operations. Keep an aggregate s-value (which is a scalar) for all the txs in your mempool. When a block comes in, subtract all the s-values for txs not included in the block. If the block includes txs you weren't aware of, request them in the same way compact blocks works, and get the full signature for those txs. It could be several thousand operations, but those are all bigInt modular additions / subtractions which I believe are pretty quick in comparison with point additions / multiplications.There may be other complications due to the fact that the witness-txids change when building a block. TXIDs don't change though so should be possible to keep track of things OK.Also you can't "fail fast" for the signature verification; you have to add everything up before you can tell if it's correct. Probably not a big deal as PoW check comes first, and invalid blocks are pretty uncommon and quite costly.Would be interested to hear if this idea looks promising.Andrew Polestra mentioned something like this in the context of CT / mimblewimble transactions a while ago, but it seems it may be applicable to regular bitcoin Schnorr txs.-Tadge
_______________________________________________
bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin- dev