Over chat it has been pointed out to me that computing the non-quadratic residue is not the same cost as computing a quadratic residue. As pointed out in footnote 7 of the the proposed BIP, c^((p+1)/4) is always a quadratic residue and must be negated to find the non-quadratic residue.
In light of this, I revise my proposed change to make the verification equation
R + sG + eP = 0.
(by 0 in the equation above I mean the identity element for the (+) operation, which is the point at infinity.)
This equation is suitable for batch verification. This equation is clearly written as a linear combination that doesn't use negation. In most implementations, equality comparison tests are implemented by subtraction and a comparison with zero. By writing the verification equation this way, we clearly see that only the comparison with zero test is needed.
For single signature verification the check becomes, compute Q := sG + eP. Verify that Q isn't the point at infinity and Q.x = r. Verify that Q.y is *not* a quadratic residue. (While I was incorrect earlier about the costs of computing a non-residue, it is the case the *verifying* a value is a quadratic residue is the same cost as verifying a value is a non-residue.)
Effectively in my first email I was suggesting that the 'e' value in a signature be negated from the current BIP proposal. In this revision I am effectively suggesting that the 's' value in a signature should be the one that is negated instead.