From: Mike Hearn <mike@plan99.net>
To: Bitcoin Dev <bitcoin-development@lists.sourceforge.net>
Subject: [Bitcoin-development] Anti DoS for tx replacement
Date: Tue, 16 Apr 2013 19:39:38 +0200 [thread overview]
Message-ID: <CANEZrP1yKeQMayFHsEUWtA3=q+v5rPAutjzEFVVHopPGNZ4jGQ@mail.gmail.com> (raw)
[-- Attachment #1: Type: text/plain, Size: 6647 bytes --]
This was previously discussed on the forums a bunch of times, but in
particular here:
https://bitcointalk.org/index.php?topic=91732.0
BTW, I don't think all this has to be solved to re-activate replacement on
testnet. It's useful for people to be able to develop apps that use this
feature, indeed, it helps build the case for re-activating it on the main
network after the necessary work is done. Otherwise there'll inevitably be
people who say "why re-activate something even though we think it's safe
when there are no use cases for it". Letting people develop and deploy
interesting prototypes in parallel solves that catch-22.
---
Refresher: since the first release Bitcoin has had the ability to replace
transactions that sit in the memory pool if the transaction is non-final,
the inputs are the same and the replacement is newer than the replacee.
Being non-final means not having reached the nLockTime threshold, and
having at least one input with a sequence number < UINT_MAX. Around the
time of the bugs in various opcodes being found, Satoshi disabled the
feature because nothing was using it - it was something he'd planned for
the future, it had no utility in the Bitcoin of 2010.
The purpose of tx replacement is to implement high frequency trading,
according to material Satoshi sent me when I asked him what it was all for
(I wanted to know why sequence numbers were a property of inputs not the
transaction).
It's very important to understand that this does *NOT* mean high-frequency
from the networks perspective. In normal operation, tx replacement is not
actually intended to be used at all. Sort of like double-spending
protection, it's a code path that's only meant to be triggered when one or
the other party is maliciously trying to roll back a negotiated contract.
And when a party is trying to do that, you don't need lots of replacements.
A single replacement is enough.
To see why this is the case please review the micropayment channel protocol
here:
https://en.bitcoin.it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
This isn't the only use of contractual HFT in Bitcoin, it's a deliberately
simplified and stripped down example (eg, that only uses two parties). The
example Satoshi gave me was more abstract and actually had N parties in it
- it left me puzzled for a while and struggling to see practical
application. The "billing for a metered resource" use case is easier to
understand.
Now the obvious problem is that even though the feature is only intended to
be used occasionally or never, nothing in the existing code stops you using
it as fast as possible and exhausting nodes CPU time and bandwidth.
What's more, solving this is not as easy as it looks. Most proposed
solutions will not work:
1) Requiring higher fees for each replacement means that a channel/contract
has to be torn down and rebuilt much, much faster than before because
otherwise the amount of money lost to fees quickly becomes the entire size
of the channel (or you can't update it very often). Remember, you'd have to
increase the fee for each replacement regardless of whether it's presented
to the network or not. As the whole point of the setup is to avoid putting
lots of transactions on the network, anything that pushes you back towards
doing that undermines the entire utility of the system.
2) Refusing to update the transaction after certain thresholds are reached,
having cooldown periods, etc also won't work because the replacement
mechanism is there to protect each counter-party in the HFT contract.
Simply converting a DoS on the network to a DoS on the participants means
one malicious party can break the mechanism that protects all the others by
broadcasting the initial set of updates all at once and deliberately
tripping the thresholds.
OK, let's take a step back. What is the purpose of abusing this feature?
It's to mount a denial of service attack - either against the entire
Bitcoin network, or against the other participants in the contract. But
someone, somewhere has to be denied service, otherwise the attack is
pointless.
We can exploit this fact by realising that typically anti-DoS is a
prioritisation problem. It doesn't usually matter if you serve some abusive
traffic if all legitimate traffic gets served first because it removes the
denial of service from the attack, and usually there are lots of ways to
attack someone with methods that don't work - real world experience
indicates that people don't pointlessly mount attacks over and over again
if there's nothing to be gained by doing so.
So we can do the following - multi-thread verification of transactions that
are trying to enter the memory pool, and order them such that high priority
transactions are verified first, low priority next, and then replacements
of transactions sorted by age of last replacement. Same thing for relaying
- faced with getdatas, service the new transactions first, replacements
with whatever is left over. Drop whatever doesn't make it into the nodes
available resources.
Handling DoS as a prioritisation problem has a number of advantages, most
obviously not introducing new hard coded magic numbers that may or may not
stay up to date with changing conditions.
This setup means someone can force CPU/bandwidth usage to whatever the node
operators have configured as their max allowed across the network for a
while, but doing so won't actually disrupt normal transactions. It'll just
result in the replacements getting dropped. It slightly increases the risk
of a malicious counter-party in an HFT contract trying to take advantage of
the saturation to themselves execute an attack on the contract, but I doubt
it'd be a problem in practice - you'd need to write your software to be
able to perform such an attack, most of the time it wouldn't work, and if
people saturate the network with low priority easily dropped transactions
so that it would work then nodes/apps could just warn users not to take
advantage of the feature whilst the flood is in progress.
I know that some people will object to such a design on principle, but I
think this is a good balance - the only attacks that exist aren't
profitable and the worst case outcome in the face of continual profitless
abuse is we switch the feature off and end up no worse off than today.
I haven't touched on the topic of cartels of malicious miners or other
topics, just DoS. This email is long enough already and handling malicious
miners (if necessary) can be done at the application protocol level, it
doesn't need any changes to the core tx replacement / locktime mechanism.
[-- Attachment #2: Type: text/html, Size: 7768 bytes --]
next reply other threads:[~2013-04-16 17:39 UTC|newest]
Thread overview: 26+ messages / expand[flat|nested] mbox.gz Atom feed top
2013-04-16 17:39 Mike Hearn [this message]
2013-04-16 18:43 ` [Bitcoin-development] Anti DoS for tx replacement Peter Todd
2013-04-17 9:48 ` Mike Hearn
2013-04-17 19:44 ` Alan Reiner
2013-04-18 6:07 ` John Dillon
2013-04-18 8:14 ` Peter Todd
2013-04-19 4:38 ` John Dillon
2013-04-19 4:55 ` Jeff Garzik
2013-04-18 8:32 ` Mike Hearn
2013-04-18 9:04 ` Peter Todd
2013-04-18 9:28 ` Peter Todd
2013-04-18 9:32 ` Mike Hearn
2013-04-18 9:28 ` Mike Hearn
2013-04-18 9:34 ` Mike Hearn
2013-04-18 10:08 ` Peter Todd
2013-04-18 10:19 ` Mike Hearn
2013-04-18 13:37 ` Gavin Andresen
[not found] ` <CAD0SH_WOG8jQvzsNzwud3fYjaxqTJo0CS7yP6XZeKvap_yqtqg@mail.gmail.com>
2013-04-17 9:19 ` Mike Hearn
2013-04-20 1:48 Jeremy Spilman
2013-07-18 11:13 ` Peter Todd
2013-07-18 12:53 ` Jeff Garzik
2013-07-18 13:43 ` Peter Todd
2013-07-18 16:09 ` Peter Todd
2013-04-20 20:51 Jeremy Spilman
2013-04-22 11:07 ` Mike Hearn
2013-04-23 12:40 ` John Dillon
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to='CANEZrP1yKeQMayFHsEUWtA3=q+v5rPAutjzEFVVHopPGNZ4jGQ@mail.gmail.com' \
--to=mike@plan99.net \
--cc=bitcoin-development@lists.sourceforge.net \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox