Hi Hugo,I appreciate the effort you and everyone else is making to improve multisig in bitcoin!
I like that this BIP gets rid of SLIP132 version bytes, as those have been de-facto deprecated in favor of output descriptors for some time. Having a standard for how to communicate descriptor records (BSMS 1.0) also seems like a nice positive.The most commonly raised issues from the 10x security guide are about how to properly verify that all hardware wallets are participants in the user's multisig quorum (and with the correct m-of-n). This shows up in two big ways:
- The O(n^2) xpub validation problem creates a bad UX and is hard for non-advanced users.
- The risk for stateless hardware wallets (like Trezor) to have their xpubs swapped out by a compromised Coordinator.
Unfortunately, this BIP does not improve either of these issues, while adding considerable complexity.1. O(n^2) Xpub Validation
The proposed use of an output descriptor checksum has an obvious 40-bit MITM collision attack. A compromised Coordinator could trick a Signer into displaying an attacker's receive address, despite a correctly functioning Signers and the user properly validating the checksum (github link).
Using a checksum with much higher entropy would reduce xpub validation to O(n) and create a very nice UX for signers. This would be a huge win for multisig! Instead, the recommended solution from the BIP is to validate all the key records manually, which is how multisig is currently done and what we desperately want to move away from. With a proper checksum, there’s no reason for a user to ever see an xpub.
Users should not be shown a checksum and asked to validate it in meatspace (across Signers) if an attacker’s address could still be substituted! Validating a single address across devices does solve this problem, but if you’re going to validate an address there’s no reason to display the checksum at all. However, validating an address is confusing to non-experts:
- Is it a wallet ID or a bitcoin address?
- Am I supposed to send funds to this address?
If creating a new checksum standard for the descriptor record is undesirable, we could use a child address (from an unhardened BIP32 path) and encode that in some way for end-users to verify it matches across all Signers. It would be strongly preferable for the encoding to be an unambiguously different format from a bitcoin address / BIP39 seed phrase, so that it’s clear it’s just a wallet ID. One non-ideal but simple solution is to use a hash function (i.e. dsha256) to calculate the digest of the child address, and display this in hexadecimal format. While hexadecimal is non-ideal for manual verification, it is already trivial for any bitcoin library to perform these steps.
2. Allow Support for Stateless Wallets
The current BIP states:
"If all checks pass, the Signer must persist the descriptor record in its storage."
While persistence has a lot of benefits, it is not a feature of the most sold multisig hardware wallet: Trezor. A simple solution here is to have each Signer sign the entire descriptor record at the end of round 2, not just its own key record in round 1. Then the data can be stored anywhere (including on the Signer itself) and played back to each Signer for validation when needed. The end-user would have no idea this was happening, but the device could refuse to display information it hasn’t fully validated (or at least add a warning message). Even a device with persistent storage would be better served using a signature, so that an evil maid couldn't tamper with the device (say in the no-encryption case for simplicity).
This existing vulnerability in stateless wallets is particularly bad for hosted multisig services like Casa/Unchained, where the service might control m-1 keys. It’s far easier for a hosted service to potentially trick non-expert users into displaying an attacker's receive address on their stateless Signer.
For example, assume the user is doing 2-of-3 multisig, where the Coordinator (service) controls 1 key. Here is how the Coordinator could trick their end-users:
- Coordinator swaps out 1 of the end-user’s xpubs, going from a 2-of-3 where the end-user has 2 seeds to a 2-of-3 where the Coordinator has 2 seeds.
- The end-user logs into the service to get a new receive address, and the service (Coordinator) displays malicious receive address X (as part of a 2-of-3).
- The end user connects stateless Signer 1 to the service (Coordinator), which under-the-hood gives stateless Signer 1 proof that it is included in this 2-of-3. Stateless singer 1 displays malicious receive address X!
- The end-user doesn't verify the address on Signer 2, as many users unfortunately don't -- perhaps it is in a far away location and the end-user (incorrectly) thinks that it’s already been validated in 2 places -- and makes a large deposit to receive address X. These funds now belong to the attacker and can be swept at any time!
If stateless Signer 1 required a signature to be replayed at step 3, stateless Signer 1 would refuse to display malicious receive address X (or at a minimum warn the end-user that it did not have enough info to properly validate the address).
This is also a concern for self-hosted multisig, I just used the hosted services as the best example.It's also not just Trezor that is stateless. For example, I wrote a simple CLI software multisig wallet as part of the buidl library to be used mostly for emergency recovery. At 800 lines of code, it's too simple/minimal to touch the file system.BIP39While unrelated, the use of BIP39 words for session tokens seems like a big mistake, as end-users have learned over years that BIP39 words are for private key material. A small percent of users may backup their token BIP39 mnemonic and not their seed phrase BIP39 mnemonic! My suggestion is to just stick with the other two Token options: decimal and hex.